MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   Unicode version

Theorem ackbij1lem5 9046
Description: Lemma for ackbij2 9065. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Assertion
Ref Expression
ackbij1lem5  |-  ( A  e.  om  ->  ( card `  ~P suc  A
)  =  ( (
card `  ~P A )  +o  ( card `  ~P A ) ) )

Proof of Theorem ackbij1lem5
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 suceq 5790 . . . . 5  |-  ( a  =  A  ->  suc  a  =  suc  A )
21pweqd 4163 . . . 4  |-  ( a  =  A  ->  ~P suc  a  =  ~P suc  A )
32fveq2d 6195 . . 3  |-  ( a  =  A  ->  ( card `  ~P suc  a
)  =  ( card `  ~P suc  A ) )
4 pweq 4161 . . . . 5  |-  ( a  =  A  ->  ~P a  =  ~P A
)
54fveq2d 6195 . . . 4  |-  ( a  =  A  ->  ( card `  ~P a )  =  ( card `  ~P A ) )
65, 5oveq12d 6668 . . 3  |-  ( a  =  A  ->  (
( card `  ~P a
)  +o  ( card `  ~P a ) )  =  ( ( card `  ~P A )  +o  ( card `  ~P A ) ) )
73, 6eqeq12d 2637 . 2  |-  ( a  =  A  ->  (
( card `  ~P suc  a
)  =  ( (
card `  ~P a
)  +o  ( card `  ~P a ) )  <-> 
( card `  ~P suc  A
)  =  ( (
card `  ~P A )  +o  ( card `  ~P A ) ) ) )
8 vex 3203 . . . . . . . . 9  |-  a  e. 
_V
98sucex 7011 . . . . . . . 8  |-  suc  a  e.  _V
109pw2en 8067 . . . . . . 7  |-  ~P suc  a  ~~  ( 2o  ^m  suc  a )
11 df-suc 5729 . . . . . . . . . 10  |-  suc  a  =  ( a  u. 
{ a } )
1211oveq2i 6661 . . . . . . . . 9  |-  ( 2o 
^m  suc  a )  =  ( 2o  ^m  ( a  u.  {
a } ) )
13 nnord 7073 . . . . . . . . . . 11  |-  ( a  e.  om  ->  Ord  a )
14 orddisj 5762 . . . . . . . . . . 11  |-  ( Ord  a  ->  ( a  i^i  { a } )  =  (/) )
15 snex 4908 . . . . . . . . . . . 12  |-  { a }  e.  _V
16 2onn 7720 . . . . . . . . . . . . 13  |-  2o  e.  om
1716elexi 3213 . . . . . . . . . . . 12  |-  2o  e.  _V
18 mapunen 8129 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  _V  /\ 
{ a }  e.  _V  /\  2o  e.  _V )  /\  ( a  i^i 
{ a } )  =  (/) )  ->  ( 2o  ^m  ( a  u. 
{ a } ) )  ~~  ( ( 2o  ^m  a )  X.  ( 2o  ^m  { a } ) ) )
1918ex 450 . . . . . . . . . . . 12  |-  ( ( a  e.  _V  /\  { a }  e.  _V  /\  2o  e.  _V )  ->  ( ( a  i^i 
{ a } )  =  (/)  ->  ( 2o 
^m  ( a  u. 
{ a } ) )  ~~  ( ( 2o  ^m  a )  X.  ( 2o  ^m  { a } ) ) ) )
208, 15, 17, 19mp3an 1424 . . . . . . . . . . 11  |-  ( ( a  i^i  { a } )  =  (/)  ->  ( 2o  ^m  (
a  u.  { a } ) )  ~~  ( ( 2o  ^m  a )  X.  ( 2o  ^m  { a } ) ) )
2113, 14, 203syl 18 . . . . . . . . . 10  |-  ( a  e.  om  ->  ( 2o  ^m  ( a  u. 
{ a } ) )  ~~  ( ( 2o  ^m  a )  X.  ( 2o  ^m  { a } ) ) )
22 ovex 6678 . . . . . . . . . . . 12  |-  ( 2o 
^m  a )  e. 
_V
2322enref 7988 . . . . . . . . . . 11  |-  ( 2o 
^m  a )  ~~  ( 2o  ^m  a
)
2417, 8mapsnen 8035 . . . . . . . . . . 11  |-  ( 2o 
^m  { a } )  ~~  2o
25 xpen 8123 . . . . . . . . . . 11  |-  ( ( ( 2o  ^m  a
)  ~~  ( 2o  ^m  a )  /\  ( 2o  ^m  { a } )  ~~  2o )  ->  ( ( 2o 
^m  a )  X.  ( 2o  ^m  {
a } ) ) 
~~  ( ( 2o 
^m  a )  X.  2o ) )
2623, 24, 25mp2an 708 . . . . . . . . . 10  |-  ( ( 2o  ^m  a )  X.  ( 2o  ^m  { a } ) ) 
~~  ( ( 2o 
^m  a )  X.  2o )
27 entr 8008 . . . . . . . . . 10  |-  ( ( ( 2o  ^m  (
a  u.  { a } ) )  ~~  ( ( 2o  ^m  a )  X.  ( 2o  ^m  { a } ) )  /\  (
( 2o  ^m  a
)  X.  ( 2o 
^m  { a } ) )  ~~  (
( 2o  ^m  a
)  X.  2o ) )  ->  ( 2o  ^m  ( a  u.  {
a } ) ) 
~~  ( ( 2o 
^m  a )  X.  2o ) )
2821, 26, 27sylancl 694 . . . . . . . . 9  |-  ( a  e.  om  ->  ( 2o  ^m  ( a  u. 
{ a } ) )  ~~  ( ( 2o  ^m  a )  X.  2o ) )
2912, 28syl5eqbr 4688 . . . . . . . 8  |-  ( a  e.  om  ->  ( 2o  ^m  suc  a ) 
~~  ( ( 2o 
^m  a )  X.  2o ) )
308pw2en 8067 . . . . . . . . . 10  |-  ~P a  ~~  ( 2o  ^m  a
)
3117enref 7988 . . . . . . . . . 10  |-  2o  ~~  2o
32 xpen 8123 . . . . . . . . . 10  |-  ( ( ~P a  ~~  ( 2o  ^m  a )  /\  2o  ~~  2o )  -> 
( ~P a  X.  2o )  ~~  (
( 2o  ^m  a
)  X.  2o ) )
3330, 31, 32mp2an 708 . . . . . . . . 9  |-  ( ~P a  X.  2o ) 
~~  ( ( 2o 
^m  a )  X.  2o )
3433ensymi 8006 . . . . . . . 8  |-  ( ( 2o  ^m  a )  X.  2o )  ~~  ( ~P a  X.  2o )
35 entr 8008 . . . . . . . 8  |-  ( ( ( 2o  ^m  suc  a )  ~~  (
( 2o  ^m  a
)  X.  2o )  /\  ( ( 2o 
^m  a )  X.  2o )  ~~  ( ~P a  X.  2o ) )  ->  ( 2o  ^m  suc  a ) 
~~  ( ~P a  X.  2o ) )
3629, 34, 35sylancl 694 . . . . . . 7  |-  ( a  e.  om  ->  ( 2o  ^m  suc  a ) 
~~  ( ~P a  X.  2o ) )
37 entr 8008 . . . . . . 7  |-  ( ( ~P suc  a  ~~  ( 2o  ^m  suc  a
)  /\  ( 2o  ^m 
suc  a )  ~~  ( ~P a  X.  2o ) )  ->  ~P suc  a  ~~  ( ~P a  X.  2o ) )
3810, 36, 37sylancr 695 . . . . . 6  |-  ( a  e.  om  ->  ~P suc  a  ~~  ( ~P a  X.  2o ) )
39 vpwex 4849 . . . . . . 7  |-  ~P a  e.  _V
40 xp2cda 9002 . . . . . . 7  |-  ( ~P a  e.  _V  ->  ( ~P a  X.  2o )  =  ( ~P a  +c  ~P a ) )
4139, 40ax-mp 5 . . . . . 6  |-  ( ~P a  X.  2o )  =  ( ~P a  +c  ~P a )
4238, 41syl6breq 4694 . . . . 5  |-  ( a  e.  om  ->  ~P suc  a  ~~  ( ~P a  +c  ~P a
) )
43 nnfi 8153 . . . . . . . . 9  |-  ( a  e.  om  ->  a  e.  Fin )
44 pwfi 8261 . . . . . . . . 9  |-  ( a  e.  Fin  <->  ~P a  e.  Fin )
4543, 44sylib 208 . . . . . . . 8  |-  ( a  e.  om  ->  ~P a  e.  Fin )
46 ficardid 8788 . . . . . . . 8  |-  ( ~P a  e.  Fin  ->  (
card `  ~P a
)  ~~  ~P a
)
4745, 46syl 17 . . . . . . 7  |-  ( a  e.  om  ->  ( card `  ~P a ) 
~~  ~P a )
48 cdaen 8995 . . . . . . 7  |-  ( ( ( card `  ~P a )  ~~  ~P a  /\  ( card `  ~P a )  ~~  ~P a )  ->  (
( card `  ~P a
)  +c  ( card `  ~P a ) ) 
~~  ( ~P a  +c  ~P a ) )
4947, 47, 48syl2anc 693 . . . . . 6  |-  ( a  e.  om  ->  (
( card `  ~P a
)  +c  ( card `  ~P a ) ) 
~~  ( ~P a  +c  ~P a ) )
5049ensymd 8007 . . . . 5  |-  ( a  e.  om  ->  ( ~P a  +c  ~P a
)  ~~  ( ( card `  ~P a )  +c  ( card `  ~P a ) ) )
51 entr 8008 . . . . 5  |-  ( ( ~P suc  a  ~~  ( ~P a  +c  ~P a )  /\  ( ~P a  +c  ~P a
)  ~~  ( ( card `  ~P a )  +c  ( card `  ~P a ) ) )  ->  ~P suc  a  ~~  ( ( card `  ~P a )  +c  ( card `  ~P a ) ) )
5242, 50, 51syl2anc 693 . . . 4  |-  ( a  e.  om  ->  ~P suc  a  ~~  ( (
card `  ~P a
)  +c  ( card `  ~P a ) ) )
53 carden2b 8793 . . . 4  |-  ( ~P
suc  a  ~~  (
( card `  ~P a
)  +c  ( card `  ~P a ) )  ->  ( card `  ~P suc  a )  =  (
card `  ( ( card `  ~P a )  +c  ( card `  ~P a ) ) ) )
5452, 53syl 17 . . 3  |-  ( a  e.  om  ->  ( card `  ~P suc  a
)  =  ( card `  ( ( card `  ~P a )  +c  ( card `  ~P a ) ) ) )
55 ficardom 8787 . . . . 5  |-  ( ~P a  e.  Fin  ->  (
card `  ~P a
)  e.  om )
5645, 55syl 17 . . . 4  |-  ( a  e.  om  ->  ( card `  ~P a )  e.  om )
57 nnacda 9023 . . . 4  |-  ( ( ( card `  ~P a )  e.  om  /\  ( card `  ~P a )  e.  om )  ->  ( card `  (
( card `  ~P a
)  +c  ( card `  ~P a ) ) )  =  ( (
card `  ~P a
)  +o  ( card `  ~P a ) ) )
5856, 56, 57syl2anc 693 . . 3  |-  ( a  e.  om  ->  ( card `  ( ( card `  ~P a )  +c  ( card `  ~P a ) ) )  =  ( ( card `  ~P a )  +o  ( card `  ~P a ) ) )
5954, 58eqtrd 2656 . 2  |-  ( a  e.  om  ->  ( card `  ~P suc  a
)  =  ( (
card `  ~P a
)  +o  ( card `  ~P a ) ) )
607, 59vtoclga 3272 1  |-  ( A  e.  om  ->  ( card `  ~P suc  A
)  =  ( (
card `  ~P A )  +o  ( card `  ~P A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653    X. cxp 5112   Ord word 5722   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065   2oc2o 7554    +o coa 7557    ^m cmap 7857    ~~ cen 7952   Fincfn 7955   cardccrd 8761    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990
This theorem is referenced by:  ackbij1lem14  9055
  Copyright terms: Public domain W3C validator