| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpred | Structured version Visualization version Unicode version | ||
| Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpred |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 11843 |
. 2
| |
| 2 | rpred.1 |
. 2
| |
| 3 | 1, 2 | sseldi 3601 |
1
|
| Copyright terms: Public domain | W3C validator |