| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptscmfsuppd | Structured version Visualization version Unicode version | ||
| Description: A function mapping to a scalar product in which one factor is finitely supported is finitely supported. Formerly part of proof for ply1coe 19666. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) (Proof shortened by AV, 18-Oct-2019.) |
| Ref | Expression |
|---|---|
| mptscmfsuppd.b |
|
| mptscmfsuppd.s |
|
| mptscmfsuppd.n |
|
| mptscmfsuppd.p |
|
| mptscmfsuppd.x |
|
| mptscmfsuppd.z |
|
| mptscmfsuppd.a |
|
| mptscmfsuppd.f |
|
| Ref | Expression |
|---|---|
| mptscmfsuppd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptscmfsuppd.x |
. 2
| |
| 2 | mptscmfsuppd.p |
. 2
| |
| 3 | mptscmfsuppd.s |
. . 3
| |
| 4 | 3 | a1i 11 |
. 2
|
| 5 | mptscmfsuppd.b |
. 2
| |
| 6 | fvexd 6203 |
. 2
| |
| 7 | mptscmfsuppd.z |
. 2
| |
| 8 | eqid 2622 |
. 2
| |
| 9 | eqid 2622 |
. 2
| |
| 10 | mptscmfsuppd.n |
. 2
| |
| 11 | mptscmfsuppd.a |
. . . 4
| |
| 12 | 11 | feqmptd 6249 |
. . 3
|
| 13 | mptscmfsuppd.f |
. . 3
| |
| 14 | 12, 13 | eqbrtrrd 4677 |
. 2
|
| 15 | 1, 2, 4, 5, 6, 7, 8, 9, 10, 14 | mptscmfsupp0 18928 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-supp 7296 df-er 7742 df-en 7956 df-fin 7959 df-fsupp 8276 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-ring 18549 df-lmod 18865 |
| This theorem is referenced by: ply1coefsupp 19665 |
| Copyright terms: Public domain | W3C validator |