MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcand Structured version   Visualization version   Unicode version

Theorem mulcand 10660
Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulcand.1  |-  ( ph  ->  A  e.  CC )
mulcand.2  |-  ( ph  ->  B  e.  CC )
mulcand.3  |-  ( ph  ->  C  e.  CC )
mulcand.4  |-  ( ph  ->  C  =/=  0 )
Assertion
Ref Expression
mulcand  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  <-> 
A  =  B ) )

Proof of Theorem mulcand
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4  |-  ( ph  ->  C  e.  CC )
2 mulcand.4 . . . 4  |-  ( ph  ->  C  =/=  0 )
3 recex 10659 . . . 4  |-  ( ( C  e.  CC  /\  C  =/=  0 )  ->  E. x  e.  CC  ( C  x.  x
)  =  1 )
41, 2, 3syl2anc 693 . . 3  |-  ( ph  ->  E. x  e.  CC  ( C  x.  x
)  =  1 )
5 oveq2 6658 . . . 4  |-  ( ( C  x.  A )  =  ( C  x.  B )  ->  (
x  x.  ( C  x.  A ) )  =  ( x  x.  ( C  x.  B
) ) )
6 simprl 794 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  x  e.  CC )
71adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  C  e.  CC )
86, 7mulcomd 10061 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  C
)  =  ( C  x.  x ) )
9 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( C  x.  x
)  =  1 )
108, 9eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  C
)  =  1 )
1110oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  A
)  =  ( 1  x.  A ) )
12 mulcand.1 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1312adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  A  e.  CC )
146, 7, 13mulassd 10063 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  A
)  =  ( x  x.  ( C  x.  A ) ) )
1513mulid2d 10058 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( 1  x.  A
)  =  A )
1611, 14, 153eqtr3d 2664 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  ( C  x.  A )
)  =  A )
1710oveq1d 6665 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  B
)  =  ( 1  x.  B ) )
18 mulcand.2 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
1918adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  ->  B  e.  CC )
206, 7, 19mulassd 10063 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  C )  x.  B
)  =  ( x  x.  ( C  x.  B ) ) )
2119mulid2d 10058 . . . . . 6  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( 1  x.  B
)  =  B )
2217, 20, 213eqtr3d 2664 . . . . 5  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( x  x.  ( C  x.  B )
)  =  B )
2316, 22eqeq12d 2637 . . . 4  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( x  x.  ( C  x.  A
) )  =  ( x  x.  ( C  x.  B ) )  <-> 
A  =  B ) )
245, 23syl5ib 234 . . 3  |-  ( (
ph  /\  ( x  e.  CC  /\  ( C  x.  x )  =  1 ) )  -> 
( ( C  x.  A )  =  ( C  x.  B )  ->  A  =  B ) )
254, 24rexlimddv 3035 . 2  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  ->  A  =  B ) )
26 oveq2 6658 . 2  |-  ( A  =  B  ->  ( C  x.  A )  =  ( C  x.  B ) )
2725, 26impbid1 215 1  |-  ( ph  ->  ( ( C  x.  A )  =  ( C  x.  B )  <-> 
A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  mulcan2d  10661  mulcanad  10662  mulcan  10664  div11  10713  eqneg  10745  qredeq  15371  cncongr1  15381  prmirredlem  19841  tanarg  24365  quad2  24566  atandm2  24604  lgseisenlem2  25101  frrusgrord0  27204
  Copyright terms: Public domain W3C validator