MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm2 Structured version   Visualization version   Unicode version

Theorem atandm2 24604
Description: This form of atandm 24603 is a bit more useful for showing that the logarithms in df-atan 24594 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm2  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )

Proof of Theorem atandm2
StepHypRef Expression
1 atandm 24603 . 2  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
2 3anass 1042 . . 3  |-  ( ( A  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  <-> 
( A  e.  CC  /\  ( ( 1  -  ( _i  x.  A
) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) ) )
3 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
4 ax-icn 9995 . . . . . . . . . . 11  |-  _i  e.  CC
5 mulcl 10020 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
64, 5mpan 706 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
7 subeq0 10307 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( ( 1  -  ( _i  x.  A ) )  =  0  <->  1  =  ( _i  x.  A ) ) )
83, 6, 7sylancr 695 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 1  -  (
_i  x.  A )
)  =  0  <->  1  =  ( _i  x.  A ) ) )
94, 4mulneg2i 10477 . . . . . . . . . . . 12  |-  ( _i  x.  -u _i )  = 
-u ( _i  x.  _i )
10 ixi 10656 . . . . . . . . . . . . 13  |-  ( _i  x.  _i )  = 
-u 1
1110negeqi 10274 . . . . . . . . . . . 12  |-  -u (
_i  x.  _i )  =  -u -u 1
12 negneg1e1 11128 . . . . . . . . . . . 12  |-  -u -u 1  =  1
139, 11, 123eqtri 2648 . . . . . . . . . . 11  |-  ( _i  x.  -u _i )  =  1
1413eqeq2i 2634 . . . . . . . . . 10  |-  ( ( _i  x.  A )  =  ( _i  x.  -u _i )  <->  ( _i  x.  A )  =  1 )
15 eqcom 2629 . . . . . . . . . 10  |-  ( ( _i  x.  A )  =  1  <->  1  =  ( _i  x.  A
) )
1614, 15bitri 264 . . . . . . . . 9  |-  ( ( _i  x.  A )  =  ( _i  x.  -u _i )  <->  1  =  ( _i  x.  A
) )
178, 16syl6bbr 278 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( 1  -  (
_i  x.  A )
)  =  0  <->  (
_i  x.  A )  =  ( _i  x.  -u _i ) ) )
18 id 22 . . . . . . . . 9  |-  ( A  e.  CC  ->  A  e.  CC )
194negcli 10349 . . . . . . . . . 10  |-  -u _i  e.  CC
2019a1i 11 . . . . . . . . 9  |-  ( A  e.  CC  ->  -u _i  e.  CC )
214a1i 11 . . . . . . . . 9  |-  ( A  e.  CC  ->  _i  e.  CC )
22 ine0 10465 . . . . . . . . . 10  |-  _i  =/=  0
2322a1i 11 . . . . . . . . 9  |-  ( A  e.  CC  ->  _i  =/=  0 )
2418, 20, 21, 23mulcand 10660 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  =  ( _i  x.  -u _i )  <->  A  =  -u _i ) )
2517, 24bitrd 268 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  -  (
_i  x.  A )
)  =  0  <->  A  =  -u _i ) )
2625necon3bid 2838 . . . . . 6  |-  ( A  e.  CC  ->  (
( 1  -  (
_i  x.  A )
)  =/=  0  <->  A  =/=  -u _i ) )
27 addcom 10222 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  =  ( ( _i  x.  A
)  +  1 ) )
283, 6, 27sylancr 695 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
1  +  ( _i  x.  A ) )  =  ( ( _i  x.  A )  +  1 ) )
29 subneg 10330 . . . . . . . . . . . . 13  |-  ( ( ( _i  x.  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( _i  x.  A )  -  -u 1
)  =  ( ( _i  x.  A )  +  1 ) )
306, 3, 29sylancl 694 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  -  -u 1
)  =  ( ( _i  x.  A )  +  1 ) )
3128, 30eqtr4d 2659 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
1  +  ( _i  x.  A ) )  =  ( ( _i  x.  A )  -  -u 1 ) )
3231eqeq1d 2624 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( 1  +  ( _i  x.  A ) )  =  0  <->  (
( _i  x.  A
)  -  -u 1
)  =  0 ) )
333negcli 10349 . . . . . . . . . . 11  |-  -u 1  e.  CC
34 subeq0 10307 . . . . . . . . . . 11  |-  ( ( ( _i  x.  A
)  e.  CC  /\  -u 1  e.  CC )  ->  ( ( ( _i  x.  A )  -  -u 1 )  =  0  <->  ( _i  x.  A )  =  -u
1 ) )
356, 33, 34sylancl 694 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( ( _i  x.  A )  -  -u 1
)  =  0  <->  (
_i  x.  A )  =  -u 1 ) )
3632, 35bitrd 268 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 1  +  ( _i  x.  A ) )  =  0  <->  (
_i  x.  A )  =  -u 1 ) )
3710eqeq2i 2634 . . . . . . . . 9  |-  ( ( _i  x.  A )  =  ( _i  x.  _i )  <->  ( _i  x.  A )  =  -u
1 )
3836, 37syl6bbr 278 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( 1  +  ( _i  x.  A ) )  =  0  <->  (
_i  x.  A )  =  ( _i  x.  _i ) ) )
3918, 21, 21, 23mulcand 10660 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  =  ( _i  x.  _i )  <->  A  =  _i ) )
4038, 39bitrd 268 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 1  +  ( _i  x.  A ) )  =  0  <->  A  =  _i ) )
4140necon3bid 2838 . . . . . 6  |-  ( A  e.  CC  ->  (
( 1  +  ( _i  x.  A ) )  =/=  0  <->  A  =/=  _i ) )
4226, 41anbi12d 747 . . . . 5  |-  ( A  e.  CC  ->  (
( ( 1  -  ( _i  x.  A
) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  <-> 
( A  =/=  -u _i  /\  A  =/=  _i ) ) )
4342pm5.32i 669 . . . 4  |-  ( ( A  e.  CC  /\  ( ( 1  -  ( _i  x.  A
) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
44 3anass 1042 . . . 4  |-  ( ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i )  <->  ( A  e.  CC  /\  ( A  =/=  -u _i  /\  A  =/=  _i ) ) )
4543, 44bitr4i 267 . . 3  |-  ( ( A  e.  CC  /\  ( ( 1  -  ( _i  x.  A
) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )  <->  ( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/= 
_i ) )
462, 45bitri 264 . 2  |-  ( ( A  e.  CC  /\  ( 1  -  (
_i  x.  A )
)  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 )  <-> 
( A  e.  CC  /\  A  =/=  -u _i  /\  A  =/=  _i ) )
471, 46bitr4i 267 1  |-  ( A  e.  dom arctan  <->  ( A  e.  CC  /\  ( 1  -  ( _i  x.  A ) )  =/=  0  /\  ( 1  +  ( _i  x.  A ) )  =/=  0 ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   dom cdm 5114  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267  arctancatan 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-atan 24594
This theorem is referenced by:  atanf  24607  atanneg  24634  atancj  24637  efiatan  24639  atanlogaddlem  24640  atanlogadd  24641  atanlogsublem  24642  atanlogsub  24643  efiatan2  24644  2efiatan  24645  atantan  24650  atanbndlem  24652  dvatan  24662  atantayl  24664
  Copyright terms: Public domain W3C validator