MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsuble0b Structured version   Visualization version   Unicode version

Theorem mulsuble0b 10895
Description: A condition for multiplication of subtraction to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulsuble0b  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  -  B )  x.  ( C  -  B )
)  <_  0  <->  ( ( A  <_  B  /\  B  <_  C )  \/  ( C  <_  B  /\  B  <_  A ) ) ) )

Proof of Theorem mulsuble0b
StepHypRef Expression
1 resubcl 10345 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
213adant3 1081 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  -  B )  e.  RR )
3 resubcl 10345 . . . . 5  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  -  B
)  e.  RR )
43ancoms 469 . . . 4  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  -  B
)  e.  RR )
543adant1 1079 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  -  B )  e.  RR )
6 mulle0b 10894 . . 3  |-  ( ( ( A  -  B
)  e.  RR  /\  ( C  -  B
)  e.  RR )  ->  ( ( ( A  -  B )  x.  ( C  -  B ) )  <_ 
0  <->  ( ( ( A  -  B )  <_  0  /\  0  <_  ( C  -  B
) )  \/  (
0  <_  ( A  -  B )  /\  ( C  -  B )  <_  0 ) ) ) )
72, 5, 6syl2anc 693 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  -  B )  x.  ( C  -  B )
)  <_  0  <->  ( (
( A  -  B
)  <_  0  /\  0  <_  ( C  -  B ) )  \/  ( 0  <_  ( A  -  B )  /\  ( C  -  B
)  <_  0 ) ) ) )
8 suble0 10542 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  -  B )  <_  0  <->  A  <_  B ) )
983adant3 1081 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  -  B
)  <_  0  <->  A  <_  B ) )
10 subge0 10541 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  ( C  -  B )  <->  B  <_  C ) )
1110ancoms 469 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( 0  <_  ( C  -  B )  <->  B  <_  C ) )
12113adant1 1079 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
0  <_  ( C  -  B )  <->  B  <_  C ) )
139, 12anbi12d 747 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  -  B )  <_  0  /\  0  <_  ( C  -  B ) )  <-> 
( A  <_  B  /\  B  <_  C ) ) )
14 subge0 10541 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <_  ( A  -  B )  <->  B  <_  A ) )
15143adant3 1081 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
0  <_  ( A  -  B )  <->  B  <_  A ) )
16 suble0 10542 . . . . . . 7  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( ( C  -  B )  <_  0  <->  C  <_  B ) )
1716ancoms 469 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( ( C  -  B )  <_  0  <->  C  <_  B ) )
18173adant1 1079 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  -  B
)  <_  0  <->  C  <_  B ) )
1915, 18anbi12d 747 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( 0  <_  ( A  -  B )  /\  ( C  -  B
)  <_  0 )  <-> 
( B  <_  A  /\  C  <_  B ) ) )
20 ancom 466 . . . 4  |-  ( ( B  <_  A  /\  C  <_  B )  <->  ( C  <_  B  /\  B  <_  A ) )
2119, 20syl6bb 276 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( 0  <_  ( A  -  B )  /\  ( C  -  B
)  <_  0 )  <-> 
( C  <_  B  /\  B  <_  A ) ) )
2213, 21orbi12d 746 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( ( A  -  B )  <_ 
0  /\  0  <_  ( C  -  B ) )  \/  ( 0  <_  ( A  -  B )  /\  ( C  -  B )  <_  0 ) )  <->  ( ( A  <_  B  /\  B  <_  C )  \/  ( C  <_  B  /\  B  <_  A ) ) ) )
237, 22bitrd 268 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( ( A  -  B )  x.  ( C  -  B )
)  <_  0  <->  ( ( A  <_  B  /\  B  <_  C )  \/  ( C  <_  B  /\  B  <_  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936    x. cmul 9941    <_ cle 10075    - cmin 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  brbtwn2  25785
  Copyright terms: Public domain W3C validator