MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvmumamul1 Structured version   Visualization version   Unicode version

Theorem mvmumamul1 20360
Description: The multiplication of an MxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an MxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
mvmumamul1.x  |-  .X.  =  ( R maMul  <. M ,  N ,  { (/) } >. )
mvmumamul1.t  |-  .x.  =  ( R maVecMul  <. M ,  N >. )
mvmumamul1.b  |-  B  =  ( Base `  R
)
mvmumamul1.r  |-  ( ph  ->  R  e.  Ring )
mvmumamul1.m  |-  ( ph  ->  M  e.  Fin )
mvmumamul1.n  |-  ( ph  ->  N  e.  Fin )
mvmumamul1.a  |-  ( ph  ->  A  e.  ( B  ^m  ( M  X.  N ) ) )
mvmumamul1.y  |-  ( ph  ->  Y  e.  ( B  ^m  N ) )
mvmumamul1.z  |-  ( ph  ->  Z  e.  ( B  ^m  ( N  X.  { (/) } ) ) )
Assertion
Ref Expression
mvmumamul1  |-  ( ph  ->  ( A. j  e.  N  ( Y `  j )  =  ( j Z (/) )  ->  A. i  e.  M  ( ( A  .x.  Y ) `  i
)  =  ( i ( A  .X.  Z
) (/) ) ) )
Distinct variable groups:    i, j, N    i, Y, j    i, Z, j    ph, i, j
Allowed substitution hints:    A( i, j)    B( i, j)    R( i, j)    .x. ( i, j)    .X. ( i,
j)    M( i, j)

Proof of Theorem mvmumamul1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 mvmumamul1.t . . . . . 6  |-  .x.  =  ( R maVecMul  <. M ,  N >. )
2 mvmumamul1.b . . . . . 6  |-  B  =  ( Base `  R
)
3 eqid 2622 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
4 mvmumamul1.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
54adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  M )  ->  R  e.  Ring )
6 mvmumamul1.m . . . . . . 7  |-  ( ph  ->  M  e.  Fin )
76adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  M )  ->  M  e.  Fin )
8 mvmumamul1.n . . . . . . 7  |-  ( ph  ->  N  e.  Fin )
98adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  M )  ->  N  e.  Fin )
10 mvmumamul1.a . . . . . . 7  |-  ( ph  ->  A  e.  ( B  ^m  ( M  X.  N ) ) )
1110adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  M )  ->  A  e.  ( B  ^m  ( M  X.  N ) ) )
12 mvmumamul1.y . . . . . . 7  |-  ( ph  ->  Y  e.  ( B  ^m  N ) )
1312adantr 481 . . . . . 6  |-  ( (
ph  /\  i  e.  M )  ->  Y  e.  ( B  ^m  N
) )
14 simpr 477 . . . . . 6  |-  ( (
ph  /\  i  e.  M )  ->  i  e.  M )
151, 2, 3, 5, 7, 9, 11, 13, 14mvmulfv 20350 . . . . 5  |-  ( (
ph  /\  i  e.  M )  ->  (
( A  .x.  Y
) `  i )  =  ( R  gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r `  R
) ( Y `  k ) ) ) ) )
1615adantlr 751 . . . 4  |-  ( ( ( ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z
(/) ) )  /\  i  e.  M )  ->  ( ( A  .x.  Y ) `  i
)  =  ( R 
gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( Y `  k ) ) ) ) )
17 fveq2 6191 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( Y `  j )  =  ( Y `  k ) )
18 oveq1 6657 . . . . . . . . . . . 12  |-  ( j  =  k  ->  (
j Z (/) )  =  ( k Z (/) ) )
1917, 18eqeq12d 2637 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( Y `  j
)  =  ( j Z (/) )  <->  ( Y `  k )  =  ( k Z (/) ) ) )
2019rspccv 3306 . . . . . . . . . 10  |-  ( A. j  e.  N  ( Y `  j )  =  ( j Z
(/) )  ->  (
k  e.  N  -> 
( Y `  k
)  =  ( k Z (/) ) ) )
2120adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z (/) ) )  ->  ( k  e.  N  ->  ( Y `  k )  =  ( k Z (/) ) ) )
2221imp 445 . . . . . . . 8  |-  ( ( ( ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z
(/) ) )  /\  k  e.  N )  ->  ( Y `  k
)  =  ( k Z (/) ) )
2322oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z
(/) ) )  /\  k  e.  N )  ->  ( ( i A k ) ( .r
`  R ) ( Y `  k ) )  =  ( ( i A k ) ( .r `  R
) ( k Z
(/) ) ) )
2423mpteq2dva 4744 . . . . . 6  |-  ( (
ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z (/) ) )  ->  ( k  e.  N  |->  ( ( i A k ) ( .r `  R ) ( Y `  k
) ) )  =  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( k Z (/) ) ) ) )
2524oveq2d 6666 . . . . 5  |-  ( (
ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z (/) ) )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r `  R
) ( Y `  k ) ) ) )  =  ( R 
gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( k Z (/) ) ) ) ) )
2625adantr 481 . . . 4  |-  ( ( ( ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z
(/) ) )  /\  i  e.  M )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( Y `  k ) ) ) )  =  ( R  gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( k Z (/) ) ) ) ) )
27 mvmumamul1.x . . . . . . 7  |-  .X.  =  ( R maMul  <. M ,  N ,  { (/) } >. )
28 snfi 8038 . . . . . . . 8  |-  { (/) }  e.  Fin
2928a1i 11 . . . . . . 7  |-  ( (
ph  /\  i  e.  M )  ->  { (/) }  e.  Fin )
30 mvmumamul1.z . . . . . . . 8  |-  ( ph  ->  Z  e.  ( B  ^m  ( N  X.  { (/) } ) ) )
3130adantr 481 . . . . . . 7  |-  ( (
ph  /\  i  e.  M )  ->  Z  e.  ( B  ^m  ( N  X.  { (/) } ) ) )
32 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
3332snid 4208 . . . . . . . 8  |-  (/)  e.  { (/)
}
3433a1i 11 . . . . . . 7  |-  ( (
ph  /\  i  e.  M )  ->  (/)  e.  { (/)
} )
3527, 2, 3, 5, 7, 9, 29, 11, 31, 14, 34mamufv 20193 . . . . . 6  |-  ( (
ph  /\  i  e.  M )  ->  (
i ( A  .X.  Z ) (/) )  =  ( R  gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( k Z (/) ) ) ) ) )
3635eqcomd 2628 . . . . 5  |-  ( (
ph  /\  i  e.  M )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( k Z (/) ) ) ) )  =  ( i ( A  .X.  Z ) (/) ) )
3736adantlr 751 . . . 4  |-  ( ( ( ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z
(/) ) )  /\  i  e.  M )  ->  ( R  gsumg  ( k  e.  N  |->  ( ( i A k ) ( .r
`  R ) ( k Z (/) ) ) ) )  =  ( i ( A  .X.  Z ) (/) ) )
3816, 26, 373eqtrd 2660 . . 3  |-  ( ( ( ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z
(/) ) )  /\  i  e.  M )  ->  ( ( A  .x.  Y ) `  i
)  =  ( i ( A  .X.  Z
) (/) ) )
3938ralrimiva 2966 . 2  |-  ( (
ph  /\  A. j  e.  N  ( Y `  j )  =  ( j Z (/) ) )  ->  A. i  e.  M  ( ( A  .x.  Y ) `  i
)  =  ( i ( A  .X.  Z
) (/) ) )
4039ex 450 1  |-  ( ph  ->  ( A. j  e.  N  ( Y `  j )  =  ( j Z (/) )  ->  A. i  e.  M  ( ( A  .x.  Y ) `  i
)  =  ( i ( A  .X.  Z
) (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   Ringcrg 18547   maMul cmmul 20189   maVecMul cmvmul 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-en 7956  df-fin 7959  df-mamu 20190  df-mvmul 20347
This theorem is referenced by:  mavmumamul1  20361
  Copyright terms: Public domain W3C validator