Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem53 Structured version   Visualization version   Unicode version

Theorem stoweidlem53 40270
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p(t_0) = 0, and p > 0 on T - U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem53.1  |-  F/_ t U
stoweidlem53.2  |-  F/ t
ph
stoweidlem53.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem53.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem53.5  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem53.6  |-  T  = 
U. J
stoweidlem53.7  |-  C  =  ( J  Cn  K
)
stoweidlem53.8  |-  ( ph  ->  J  e.  Comp )
stoweidlem53.9  |-  ( ph  ->  A  C_  C )
stoweidlem53.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem53.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem53.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem53.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem53.14  |-  ( ph  ->  U  e.  J )
stoweidlem53.15  |-  ( ph  ->  ( T  \  U
)  =/=  (/) )
stoweidlem53.16  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem53  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Distinct variable groups:    f, g, h, q, t, T    f,
r, q, t, T   
x, f, q, t, T    A, f, g, h, q, t    Q, f, g, q    U, f, g, h, q    f, Z, g, h, q, t    ph, f, g, h, q   
w, g, h, t, T    g, W    h, J, t, w    q, p, t, T    A, p    U, p    Z, p    A, r    U, r    ph, r    t, K    w, Q    w, U    ph, w    x, A    x, Q    x, U    x, Z    ph, x
Allowed substitution hints:    ph( t, p)    A( w)    C( x, w, t, f, g, h, r, q, p)    Q( t, h, r, p)    U( t)    J( x, f, g, r, q, p)    K( x, w, f, g, h, r, q, p)    W( x, w, t, f, h, r, q, p)    Z( w, r)

Proof of Theorem stoweidlem53
Dummy variables  i  m  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem53.1 . . . 4  |-  F/_ t U
2 stoweidlem53.2 . . . 4  |-  F/ t
ph
3 stoweidlem53.3 . . . 4  |-  K  =  ( topGen `  ran  (,) )
4 stoweidlem53.4 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
5 stoweidlem53.5 . . . 4  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
6 stoweidlem53.6 . . . 4  |-  T  = 
U. J
7 stoweidlem53.7 . . . 4  |-  C  =  ( J  Cn  K
)
8 stoweidlem53.8 . . . 4  |-  ( ph  ->  J  e.  Comp )
9 stoweidlem53.9 . . . 4  |-  ( ph  ->  A  C_  C )
10 stoweidlem53.10 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
11 stoweidlem53.11 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
12 stoweidlem53.12 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
13 stoweidlem53.13 . . . 4  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
14 stoweidlem53.14 . . . 4  |-  ( ph  ->  U  e.  J )
15 stoweidlem53.16 . . . 4  |-  ( ph  ->  Z  e.  U )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15stoweidlem50 40267 . . 3  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
17 nfv 1843 . . . . . 6  |-  F/ t  u  e.  Fin
18 nfcv 2764 . . . . . . 7  |-  F/_ t
u
19 nfv 1843 . . . . . . . . . . . . 13  |-  F/ t ( h `  Z
)  =  0
20 nfra1 2941 . . . . . . . . . . . . 13  |-  F/ t A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )
2119, 20nfan 1828 . . . . . . . . . . . 12  |-  F/ t ( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) )
22 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ t A
2321, 22nfrab 3123 . . . . . . . . . . 11  |-  F/_ t { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
244, 23nfcxfr 2762 . . . . . . . . . 10  |-  F/_ t Q
25 nfrab1 3122 . . . . . . . . . . 11  |-  F/_ t { t  e.  T  |  0  <  (
h `  t ) }
2625nfeq2 2780 . . . . . . . . . 10  |-  F/ t  w  =  { t  e.  T  |  0  <  ( h `  t ) }
2724, 26nfrex 3007 . . . . . . . . 9  |-  F/ t E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) }
28 nfcv 2764 . . . . . . . . 9  |-  F/_ t J
2927, 28nfrab 3123 . . . . . . . 8  |-  F/_ t { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
305, 29nfcxfr 2762 . . . . . . 7  |-  F/_ t W
3118, 30nfss 3596 . . . . . 6  |-  F/ t  u  C_  W
32 nfcv 2764 . . . . . . . 8  |-  F/_ t T
3332, 1nfdif 3731 . . . . . . 7  |-  F/_ t
( T  \  U
)
34 nfcv 2764 . . . . . . 7  |-  F/_ t U. u
3533, 34nfss 3596 . . . . . 6  |-  F/ t ( T  \  U
)  C_  U. u
3617, 31, 35nf3an 1831 . . . . 5  |-  F/ t ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u )
372, 36nfan 1828 . . . 4  |-  F/ t ( ph  /\  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
38 nfv 1843 . . . . 5  |-  F/ w ph
39 nfv 1843 . . . . . 6  |-  F/ w  u  e.  Fin
40 nfcv 2764 . . . . . . 7  |-  F/_ w u
41 nfrab1 3122 . . . . . . . 8  |-  F/_ w { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
425, 41nfcxfr 2762 . . . . . . 7  |-  F/_ w W
4340, 42nfss 3596 . . . . . 6  |-  F/ w  u  C_  W
44 nfv 1843 . . . . . 6  |-  F/ w
( T  \  U
)  C_  U. u
4539, 43, 44nf3an 1831 . . . . 5  |-  F/ w
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u )
4638, 45nfan 1828 . . . 4  |-  F/ w
( ph  /\  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
47 nfv 1843 . . . . 5  |-  F/ h ph
48 nfv 1843 . . . . . 6  |-  F/ h  u  e.  Fin
49 nfcv 2764 . . . . . . 7  |-  F/_ h u
50 nfre1 3005 . . . . . . . . 9  |-  F/ h E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) }
51 nfcv 2764 . . . . . . . . 9  |-  F/_ h J
5250, 51nfrab 3123 . . . . . . . 8  |-  F/_ h { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
535, 52nfcxfr 2762 . . . . . . 7  |-  F/_ h W
5449, 53nfss 3596 . . . . . 6  |-  F/ h  u  C_  W
55 nfv 1843 . . . . . 6  |-  F/ h
( T  \  U
)  C_  U. u
5648, 54, 55nf3an 1831 . . . . 5  |-  F/ h
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u )
5747, 56nfan 1828 . . . 4  |-  F/ h
( ph  /\  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
58 eqid 2622 . . . 4  |-  ( w  e.  u  |->  { h  e.  Q  |  w  =  { t  e.  T  |  0  <  (
h `  t ) } } )  =  ( w  e.  u  |->  { h  e.  Q  |  w  =  { t  e.  T  |  0  <  ( h `  t
) } } )
59 cmptop 21198 . . . . . . . 8  |-  ( J  e.  Comp  ->  J  e. 
Top )
608, 59syl 17 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
61 retop 22565 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  Top
623, 61eqeltri 2697 . . . . . . 7  |-  K  e. 
Top
63 cnfex 39187 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K
)  e.  _V )
6460, 62, 63sylancl 694 . . . . . 6  |-  ( ph  ->  ( J  Cn  K
)  e.  _V )
659, 7syl6sseq 3651 . . . . . 6  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
6664, 65ssexd 4805 . . . . 5  |-  ( ph  ->  A  e.  _V )
6766adantr 481 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  A  e.  _V )
68 simpr1 1067 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  u  e.  Fin )
69 simpr2 1068 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  u  C_  W )
70 simpr3 1069 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  ( T  \  U )  C_  U. u )
71 stoweidlem53.15 . . . . 5  |-  ( ph  ->  ( T  \  U
)  =/=  (/) )
7271adantr 481 . . . 4  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  ( T  \  U )  =/=  (/) )
7337, 46, 57, 4, 5, 58, 67, 68, 69, 70, 72stoweidlem35 40252 . . 3  |-  ( (
ph  /\  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) )  ->  E. m E. q ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )
7416, 73exlimddv 1863 . 2  |-  ( ph  ->  E. m E. q
( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )
75 nfv 1843 . . . . . 6  |-  F/ i
ph
76 nfv 1843 . . . . . . 7  |-  F/ i  m  e.  NN
77 nfv 1843 . . . . . . . 8  |-  F/ i  q : ( 1 ... m ) --> Q
78 nfcv 2764 . . . . . . . . 9  |-  F/_ i
( T  \  U
)
79 nfre1 3005 . . . . . . . . 9  |-  F/ i E. i  e.  ( 1 ... m ) 0  <  ( ( q `  i ) `
 t )
8078, 79nfral 2945 . . . . . . . 8  |-  F/ i A. t  e.  ( T  \  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `  i ) `
 t )
8177, 80nfan 1828 . . . . . . 7  |-  F/ i ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
)
8276, 81nfan 1828 . . . . . 6  |-  F/ i ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) )
8375, 82nfan 1828 . . . . 5  |-  F/ i ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )
84 nfv 1843 . . . . . . 7  |-  F/ t  m  e.  NN
85 nfcv 2764 . . . . . . . . 9  |-  F/_ t
q
86 nfcv 2764 . . . . . . . . 9  |-  F/_ t
( 1 ... m
)
8785, 86, 24nff 6041 . . . . . . . 8  |-  F/ t  q : ( 1 ... m ) --> Q
88 nfra1 2941 . . . . . . . 8  |-  F/ t A. t  e.  ( T  \  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `  i ) `
 t )
8987, 88nfan 1828 . . . . . . 7  |-  F/ t ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
)
9084, 89nfan 1828 . . . . . 6  |-  F/ t ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) )
912, 90nfan 1828 . . . . 5  |-  F/ t ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )
92 eqid 2622 . . . . 5  |-  ( t  e.  T  |->  ( ( 1  /  m )  x.  sum_ y  e.  ( 1 ... m ) ( ( q `  y ) `  t
) ) )  =  ( t  e.  T  |->  ( ( 1  /  m )  x.  sum_ y  e.  ( 1 ... m ) ( ( q `  y
) `  t )
) )
93 simprl 794 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  m  e.  NN )
94 simprrl 804 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  q :
( 1 ... m
) --> Q )
95 simprrr 805 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
)
9665adantr 481 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  A  C_  ( J  Cn  K ) )
97103adant1r 1319 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
98113adant1r 1319 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
9912adantlr 751 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T  \  U
) E. i  e.  ( 1 ... m
) 0  <  (
( q `  i
) `  t )
) ) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)
100 elssuni 4467 . . . . . . . . 9  |-  ( U  e.  J  ->  U  C_ 
U. J )
101100, 6syl6sseqr 3652 . . . . . . . 8  |-  ( U  e.  J  ->  U  C_  T )
10214, 101syl 17 . . . . . . 7  |-  ( ph  ->  U  C_  T )
103102, 15sseldd 3604 . . . . . 6  |-  ( ph  ->  Z  e.  T )
104103adantr 481 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  Z  e.  T )
10583, 91, 3, 4, 92, 93, 94, 95, 6, 96, 97, 98, 99, 104stoweidlem44 40261 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) ) )  ->  E. p  e.  A  ( A. t  e.  T  (
0  <_  ( p `  t )  /\  (
p `  t )  <_  1 )  /\  (
p `  Z )  =  0  /\  A. t  e.  ( T  \  U ) 0  < 
( p `  t
) ) )
106105ex 450 . . 3  |-  ( ph  ->  ( ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
107106exlimdvv 1862 . 2  |-  ( ph  ->  ( E. m E. q ( m  e.  NN  /\  ( q : ( 1 ... m ) --> Q  /\  A. t  e.  ( T 
\  U ) E. i  e.  ( 1 ... m ) 0  <  ( ( q `
 i ) `  t ) ) )  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) ) )
10874, 107mpd 15 1  |-  ( ph  ->  E. p  e.  A  ( A. t  e.  T  ( 0  <_  (
p `  t )  /\  ( p `  t
)  <_  1 )  /\  ( p `  Z )  =  0  /\  A. t  e.  ( T  \  U
) 0  <  (
p `  t )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   (,)cioo 12175   ...cfz 12326   sum_csu 14416   topGenctg 16098   Topctop 20698    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweidlem55  40272
  Copyright terms: Public domain W3C validator