MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmof Structured version   Visualization version   Unicode version

Theorem nmof 22523
Description: The operator norm is a function into the extended reals. (Contributed by Mario Carneiro, 18-Oct-2015.) (Proof shortened by AV, 26-Sep-2020.)
Hypothesis
Ref Expression
nmofval.1  |-  N  =  ( S normOp T )
Assertion
Ref Expression
nmof  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N :
( S  GrpHom  T ) -->
RR* )

Proof of Theorem nmof
Dummy variables  f 
r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . 3  |-  N  =  ( S normOp T )
2 eqid 2622 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 eqid 2622 . . 3  |-  ( norm `  S )  =  (
norm `  S )
4 eqid 2622 . . 3  |-  ( norm `  T )  =  (
norm `  T )
51, 2, 3, 4nmofval 22518 . 2  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N  =  ( f  e.  ( S  GrpHom  T )  |-> inf ( { r  e.  ( 0 [,) +oo )  |  A. x  e.  (
Base `  S )
( ( norm `  T
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  S ) `  x ) ) } ,  RR* ,  <  )
) )
6 ssrab2 3687 . . . 4  |-  { r  e.  ( 0 [,) +oo )  |  A. x  e.  ( Base `  S ) ( (
norm `  T ) `  ( f `  x
) )  <_  (
r  x.  ( (
norm `  S ) `  x ) ) } 
C_  ( 0 [,) +oo )
7 icossxr 12258 . . . 4  |-  ( 0 [,) +oo )  C_  RR*
86, 7sstri 3612 . . 3  |-  { r  e.  ( 0 [,) +oo )  |  A. x  e.  ( Base `  S ) ( (
norm `  T ) `  ( f `  x
) )  <_  (
r  x.  ( (
norm `  S ) `  x ) ) } 
C_  RR*
9 infxrcl 12163 . . 3  |-  ( { r  e.  ( 0 [,) +oo )  | 
A. x  e.  (
Base `  S )
( ( norm `  T
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  S ) `  x ) ) } 
C_  RR*  -> inf ( {
r  e.  ( 0 [,) +oo )  | 
A. x  e.  (
Base `  S )
( ( norm `  T
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  S ) `  x ) ) } ,  RR* ,  <  )  e.  RR* )
108, 9mp1i 13 . 2  |-  ( ( ( S  e. NrmGrp  /\  T  e. NrmGrp )  /\  f  e.  ( S  GrpHom  T ) )  -> inf ( {
r  e.  ( 0 [,) +oo )  | 
A. x  e.  (
Base `  S )
( ( norm `  T
) `  ( f `  x ) )  <_ 
( r  x.  (
( norm `  S ) `  x ) ) } ,  RR* ,  <  )  e.  RR* )
115, 10fmpt3d 6386 1  |-  ( ( S  e. NrmGrp  /\  T  e. NrmGrp
)  ->  N :
( S  GrpHom  T ) -->
RR* )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   0cc0 9936    x. cmul 9941   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   Basecbs 15857    GrpHom cghm 17657   normcnm 22381  NrmGrpcngp 22382   normOpcnmo 22509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-nmo 22512
This theorem is referenced by:  nmocl  22524  isnghm  22527
  Copyright terms: Public domain W3C validator