HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpari Structured version   Visualization version   Unicode version

Theorem normpari 28011
Description: Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normpar.1  |-  A  e. 
~H
normpar.2  |-  B  e. 
~H
Assertion
Ref Expression
normpari  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  A
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  B ) ^ 2 ) ) )

Proof of Theorem normpari
StepHypRef Expression
1 normpar.1 . . . . 5  |-  A  e. 
~H
2 normpar.2 . . . . 5  |-  B  e. 
~H
31, 2hvsubcli 27878 . . . 4  |-  ( A  -h  B )  e. 
~H
43normsqi 27989 . . 3  |-  ( (
normh `  ( A  -h  B ) ) ^
2 )  =  ( ( A  -h  B
)  .ih  ( A  -h  B ) )
51, 2hvaddcli 27875 . . . 4  |-  ( A  +h  B )  e. 
~H
65normsqi 27989 . . 3  |-  ( (
normh `  ( A  +h  B ) ) ^
2 )  =  ( ( A  +h  B
)  .ih  ( A  +h  B ) )
74, 6oveq12i 6662 . 2  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( ( A  -h  B )  .ih  ( A  -h  B
) )  +  ( ( A  +h  B
)  .ih  ( A  +h  B ) ) )
81normsqi 27989 . . . . . 6  |-  ( (
normh `  A ) ^
2 )  =  ( A  .ih  A )
98oveq2i 6661 . . . . 5  |-  ( 2  x.  ( ( normh `  A ) ^ 2 ) )  =  ( 2  x.  ( A 
.ih  A ) )
101, 1hicli 27938 . . . . . 6  |-  ( A 
.ih  A )  e.  CC
11102timesi 11147 . . . . 5  |-  ( 2  x.  ( A  .ih  A ) )  =  ( ( A  .ih  A
)  +  ( A 
.ih  A ) )
129, 11eqtri 2644 . . . 4  |-  ( 2  x.  ( ( normh `  A ) ^ 2 ) )  =  ( ( A  .ih  A
)  +  ( A 
.ih  A ) )
132normsqi 27989 . . . . . 6  |-  ( (
normh `  B ) ^
2 )  =  ( B  .ih  B )
1413oveq2i 6661 . . . . 5  |-  ( 2  x.  ( ( normh `  B ) ^ 2 ) )  =  ( 2  x.  ( B 
.ih  B ) )
152, 2hicli 27938 . . . . . 6  |-  ( B 
.ih  B )  e.  CC
16152timesi 11147 . . . . 5  |-  ( 2  x.  ( B  .ih  B ) )  =  ( ( B  .ih  B
)  +  ( B 
.ih  B ) )
1714, 16eqtri 2644 . . . 4  |-  ( 2  x.  ( ( normh `  B ) ^ 2 ) )  =  ( ( B  .ih  B
)  +  ( B 
.ih  B ) )
1812, 17oveq12i 6662 . . 3  |-  ( ( 2  x.  ( (
normh `  A ) ^
2 ) )  +  ( 2  x.  (
( normh `  B ) ^ 2 ) ) )  =  ( ( ( A  .ih  A
)  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
191, 2, 1, 2normlem9 27975 . . . . . 6  |-  ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  -  (
( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2010, 15addcli 10044 . . . . . . 7  |-  ( ( A  .ih  A )  +  ( B  .ih  B ) )  e.  CC
211, 2hicli 27938 . . . . . . . 8  |-  ( A 
.ih  B )  e.  CC
222, 1hicli 27938 . . . . . . . 8  |-  ( B 
.ih  A )  e.  CC
2321, 22addcli 10044 . . . . . . 7  |-  ( ( A  .ih  B )  +  ( B  .ih  A ) )  e.  CC
2420, 23negsubi 10359 . . . . . 6  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  -  (
( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2519, 24eqtr4i 2647 . . . . 5  |-  ( ( A  -h  B ) 
.ih  ( A  -h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) )
261, 2, 1, 2normlem8 27974 . . . . 5  |-  ( ( A  +h  B ) 
.ih  ( A  +h  B ) )  =  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) )
2725, 26oveq12i 6662 . . . 4  |-  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  =  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  +  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) ) )
2823negcli 10349 . . . . 5  |-  -u (
( A  .ih  B
)  +  ( B 
.ih  A ) )  e.  CC
2920, 28, 20, 23add42i 10261 . . . 4  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  +  ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  B
)  +  ( B 
.ih  A ) ) ) )  =  ( ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  A
)  +  ( B 
.ih  B ) ) )  +  ( ( ( A  .ih  B
)  +  ( B 
.ih  A ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) ) )
3023negidi 10350 . . . . . 6  |-  ( ( ( A  .ih  B
)  +  ( B 
.ih  A ) )  +  -u ( ( A 
.ih  B )  +  ( B  .ih  A
) ) )  =  0
3130oveq2i 6661 . . . . 5  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  ( ( ( A 
.ih  B )  +  ( B  .ih  A
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) ) )  =  ( ( ( ( A 
.ih  A )  +  ( B  .ih  B
) )  +  ( ( A  .ih  A
)  +  ( B 
.ih  B ) ) )  +  0 )
3220, 20addcli 10044 . . . . . 6  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  e.  CC
3332addid1i 10223 . . . . 5  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  0 )  =  ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )
3410, 15, 10, 15add4i 10260 . . . . 5  |-  ( ( ( A  .ih  A
)  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  =  ( ( ( A 
.ih  A )  +  ( A  .ih  A
) )  +  ( ( B  .ih  B
)  +  ( B 
.ih  B ) ) )
3531, 33, 343eqtri 2648 . . . 4  |-  ( ( ( ( A  .ih  A )  +  ( B 
.ih  B ) )  +  ( ( A 
.ih  A )  +  ( B  .ih  B
) ) )  +  ( ( ( A 
.ih  B )  +  ( B  .ih  A
) )  +  -u ( ( A  .ih  B )  +  ( B 
.ih  A ) ) ) )  =  ( ( ( A  .ih  A )  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
3627, 29, 353eqtri 2648 . . 3  |-  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )  =  ( ( ( A  .ih  A
)  +  ( A 
.ih  A ) )  +  ( ( B 
.ih  B )  +  ( B  .ih  B
) ) )
3718, 36eqtr4i 2647 . 2  |-  ( ( 2  x.  ( (
normh `  A ) ^
2 ) )  +  ( 2  x.  (
( normh `  B ) ^ 2 ) ) )  =  ( ( ( A  -h  B
)  .ih  ( A  -h  B ) )  +  ( ( A  +h  B )  .ih  ( A  +h  B ) ) )
387, 37eqtr4i 2647 1  |-  ( ( ( normh `  ( A  -h  B ) ) ^
2 )  +  ( ( normh `  ( A  +h  B ) ) ^
2 ) )  =  ( ( 2  x.  ( ( normh `  A
) ^ 2 ) )  +  ( 2  x.  ( ( normh `  B ) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   2c2 11070   ^cexp 12860   ~Hchil 27776    +h cva 27777    .ih csp 27779   normhcno 27780    -h cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-hfvadd 27857  ax-hv0cl 27860  ax-hfvmul 27862  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-hnorm 27825  df-hvsub 27828
This theorem is referenced by:  normpar  28012  normpar2i  28013
  Copyright terms: Public domain W3C validator