MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmul0or Structured version   Visualization version   Unicode version

Theorem nvmul0or 27505
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmul0or.1  |-  X  =  ( BaseSet `  U )
nvmul0or.4  |-  S  =  ( .sOLD `  U )
nvmul0or.6  |-  Z  =  ( 0vec `  U
)
Assertion
Ref Expression
nvmul0or  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  (
( A S B )  =  Z  <->  ( A  =  0  \/  B  =  Z ) ) )

Proof of Theorem nvmul0or
StepHypRef Expression
1 df-ne 2795 . . . . 5  |-  ( A  =/=  0  <->  -.  A  =  0 )
2 oveq2 6658 . . . . . . . 8  |-  ( ( A S B )  =  Z  ->  (
( 1  /  A
) S ( A S B ) )  =  ( ( 1  /  A ) S Z ) )
32ad2antlr 763 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  A  e.  CC  /\  B  e.  X )  /\  ( A S B )  =  Z )  /\  A  =/=  0 )  ->  (
( 1  /  A
) S ( A S B ) )  =  ( ( 1  /  A ) S Z ) )
4 recid2 10700 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 1  /  A )  x.  A
)  =  1 )
54oveq1d 6665 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( ( 1  /  A )  x.  A ) S B )  =  ( 1 S B ) )
653ad2antl2 1224 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  (
( ( 1  /  A )  x.  A
) S B )  =  ( 1 S B ) )
7 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  U  e.  NrmCVec )
8 reccl 10692 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  CC )
983ad2antl2 1224 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  (
1  /  A )  e.  CC )
10 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  A  e.  CC )
11 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  B  e.  X )
12 nvmul0or.1 . . . . . . . . . . 11  |-  X  =  ( BaseSet `  U )
13 nvmul0or.4 . . . . . . . . . . 11  |-  S  =  ( .sOLD `  U )
1412, 13nvsass 27483 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  (
( 1  /  A
)  e.  CC  /\  A  e.  CC  /\  B  e.  X ) )  -> 
( ( ( 1  /  A )  x.  A ) S B )  =  ( ( 1  /  A ) S ( A S B ) ) )
157, 9, 10, 11, 14syl13anc 1328 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  (
( ( 1  /  A )  x.  A
) S B )  =  ( ( 1  /  A ) S ( A S B ) ) )
1612, 13nvsid 27482 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
1 S B )  =  B )
17163adant2 1080 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  (
1 S B )  =  B )
1817adantr 481 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  (
1 S B )  =  B )
196, 15, 183eqtr3d 2664 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  (
( 1  /  A
) S ( A S B ) )  =  B )
2019adantlr 751 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  A  e.  CC  /\  B  e.  X )  /\  ( A S B )  =  Z )  /\  A  =/=  0 )  ->  (
( 1  /  A
) S ( A S B ) )  =  B )
21 nvmul0or.6 . . . . . . . . . . . 12  |-  Z  =  ( 0vec `  U
)
2213, 21nvsz 27493 . . . . . . . . . . 11  |-  ( ( U  e.  NrmCVec  /\  (
1  /  A )  e.  CC )  -> 
( ( 1  /  A ) S Z )  =  Z )
238, 22sylan2 491 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( 1  /  A ) S Z )  =  Z )
2423anassrs 680 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC )  /\  A  =/=  0
)  ->  ( (
1  /  A ) S Z )  =  Z )
25243adantl3 1219 . . . . . . . 8  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  A  =/=  0 )  ->  (
( 1  /  A
) S Z )  =  Z )
2625adantlr 751 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  A  e.  CC  /\  B  e.  X )  /\  ( A S B )  =  Z )  /\  A  =/=  0 )  ->  (
( 1  /  A
) S Z )  =  Z )
273, 20, 263eqtr3d 2664 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  A  e.  CC  /\  B  e.  X )  /\  ( A S B )  =  Z )  /\  A  =/=  0 )  ->  B  =  Z )
2827ex 450 . . . . 5  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  ( A S B )  =  Z )  ->  ( A  =/=  0  ->  B  =  Z ) )
291, 28syl5bir 233 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  ( A S B )  =  Z )  ->  ( -.  A  =  0  ->  B  =  Z ) )
3029orrd 393 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  /\  ( A S B )  =  Z )  ->  ( A  =  0  \/  B  =  Z )
)
3130ex 450 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  (
( A S B )  =  Z  -> 
( A  =  0  \/  B  =  Z ) ) )
3212, 13, 21nv0 27492 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
0 S B )  =  Z )
33 oveq1 6657 . . . . . 6  |-  ( A  =  0  ->  ( A S B )  =  ( 0 S B ) )
3433eqeq1d 2624 . . . . 5  |-  ( A  =  0  ->  (
( A S B )  =  Z  <->  ( 0 S B )  =  Z ) )
3532, 34syl5ibrcom 237 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( A  =  0  ->  ( A S B )  =  Z ) )
36353adant2 1080 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  ( A  =  0  ->  ( A S B )  =  Z ) )
3713, 21nvsz 27493 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC )  ->  ( A S Z )  =  Z )
38 oveq2 6658 . . . . . 6  |-  ( B  =  Z  ->  ( A S B )  =  ( A S Z ) )
3938eqeq1d 2624 . . . . 5  |-  ( B  =  Z  ->  (
( A S B )  =  Z  <->  ( A S Z )  =  Z ) )
4037, 39syl5ibrcom 237 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC )  ->  ( B  =  Z  ->  ( A S B )  =  Z ) )
41403adant3 1081 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  ( B  =  Z  ->  ( A S B )  =  Z ) )
4236, 41jaod 395 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  (
( A  =  0  \/  B  =  Z )  ->  ( A S B )  =  Z ) )
4331, 42impbid 202 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  CC  /\  B  e.  X )  ->  (
( A S B )  =  Z  <->  ( A  =  0  \/  B  =  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   NrmCVeccnv 27439   BaseSetcba 27441   .sOLDcns 27442   0veccn0v 27443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455
This theorem is referenced by:  nmlno0lem  27648
  Copyright terms: Public domain W3C validator