| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oev2 | Structured version Visualization version Unicode version | ||
| Description: Alternate value of ordinal exponentiation. Compare oev 7594. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oev2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 6659 |
. . . . . 6
| |
| 2 | oe0m0 7600 |
. . . . . 6
| |
| 3 | 1, 2 | syl6eq 2672 |
. . . . 5
|
| 4 | fveq2 6191 |
. . . . . . . 8
| |
| 5 | 1on 7567 |
. . . . . . . . . 10
| |
| 6 | 5 | elexi 3213 |
. . . . . . . . 9
|
| 7 | 6 | rdg0 7517 |
. . . . . . . 8
|
| 8 | 4, 7 | syl6eq 2672 |
. . . . . . 7
|
| 9 | inteq 4478 |
. . . . . . . 8
| |
| 10 | int0 4490 |
. . . . . . . 8
| |
| 11 | 9, 10 | syl6eq 2672 |
. . . . . . 7
|
| 12 | 8, 11 | ineq12d 3815 |
. . . . . 6
|
| 13 | inv1 3970 |
. . . . . . 7
| |
| 14 | 13 | a1i 11 |
. . . . . 6
|
| 15 | 12, 14 | sylan9eqr 2678 |
. . . . 5
|
| 16 | 3, 15 | eqtr4d 2659 |
. . . 4
|
| 17 | oveq1 6657 |
. . . . . . 7
| |
| 18 | oe0m1 7601 |
. . . . . . . 8
| |
| 19 | 18 | biimpa 501 |
. . . . . . 7
|
| 20 | 17, 19 | sylan9eqr 2678 |
. . . . . 6
|
| 21 | 20 | an32s 846 |
. . . . 5
|
| 22 | int0el 4508 |
. . . . . . . 8
| |
| 23 | 22 | ineq2d 3814 |
. . . . . . 7
|
| 24 | in0 3968 |
. . . . . . 7
| |
| 25 | 23, 24 | syl6eq 2672 |
. . . . . 6
|
| 26 | 25 | adantl 482 |
. . . . 5
|
| 27 | 21, 26 | eqtr4d 2659 |
. . . 4
|
| 28 | 16, 27 | oe0lem 7593 |
. . 3
|
| 29 | inteq 4478 |
. . . . . . . . . 10
| |
| 30 | 29, 10 | syl6eq 2672 |
. . . . . . . . 9
|
| 31 | 30 | difeq2d 3728 |
. . . . . . . 8
|
| 32 | difid 3948 |
. . . . . . . 8
| |
| 33 | 31, 32 | syl6eq 2672 |
. . . . . . 7
|
| 34 | 33 | uneq2d 3767 |
. . . . . 6
|
| 35 | uncom 3757 |
. . . . . 6
| |
| 36 | un0 3967 |
. . . . . 6
| |
| 37 | 34, 35, 36 | 3eqtr3g 2679 |
. . . . 5
|
| 38 | 37 | adantl 482 |
. . . 4
|
| 39 | 38 | ineq2d 3814 |
. . 3
|
| 40 | 28, 39 | eqtr4d 2659 |
. 2
|
| 41 | oevn0 7595 |
. . 3
| |
| 42 | int0el 4508 |
. . . . . . . . . 10
| |
| 43 | 42 | difeq2d 3728 |
. . . . . . . . 9
|
| 44 | dif0 3950 |
. . . . . . . . 9
| |
| 45 | 43, 44 | syl6eq 2672 |
. . . . . . . 8
|
| 46 | 45 | uneq2d 3767 |
. . . . . . 7
|
| 47 | unv 3971 |
. . . . . . 7
| |
| 48 | 46, 35, 47 | 3eqtr3g 2679 |
. . . . . 6
|
| 49 | 48 | adantl 482 |
. . . . 5
|
| 50 | 49 | ineq2d 3814 |
. . . 4
|
| 51 | inv1 3970 |
. . . 4
| |
| 52 | 50, 51 | syl6req 2673 |
. . 3
|
| 53 | 41, 52 | eqtrd 2656 |
. 2
|
| 54 | 40, 53 | oe0lem 7593 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oexp 7566 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |