MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval1 Structured version   Visualization version   Unicode version

Theorem pcoval1 22813
Description: Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
Assertion
Ref Expression
pcoval1  |-  ( (
ph  /\  X  e.  ( 0 [,] (
1  /  2 ) ) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  ( F `  ( 2  x.  X
) ) )

Proof of Theorem pcoval1
StepHypRef Expression
1 0re 10040 . . . . 5  |-  0  e.  RR
2 1re 10039 . . . . 5  |-  1  e.  RR
3 0le0 11110 . . . . 5  |-  0  <_  0
4 halfre 11246 . . . . . 6  |-  ( 1  /  2 )  e.  RR
5 halflt1 11250 . . . . . 6  |-  ( 1  /  2 )  <  1
64, 2, 5ltleii 10160 . . . . 5  |-  ( 1  /  2 )  <_ 
1
7 iccss 12241 . . . . 5  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  <_ 
0  /\  ( 1  /  2 )  <_ 
1 ) )  -> 
( 0 [,] (
1  /  2 ) )  C_  ( 0 [,] 1 ) )
81, 2, 3, 6, 7mp4an 709 . . . 4  |-  ( 0 [,] ( 1  / 
2 ) )  C_  ( 0 [,] 1
)
98sseli 3599 . . 3  |-  ( X  e.  ( 0 [,] ( 1  /  2
) )  ->  X  e.  ( 0 [,] 1
) )
10 pcoval.2 . . . 4  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
11 pcoval.3 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
1210, 11pcovalg 22812 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  if ( X  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  X ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
139, 12sylan2 491 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] (
1  /  2 ) ) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  if ( X  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  X ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
14 elii1 22734 . . . . 5  |-  ( X  e.  ( 0 [,] ( 1  /  2
) )  <->  ( X  e.  ( 0 [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )
1514simprbi 480 . . . 4  |-  ( X  e.  ( 0 [,] ( 1  /  2
) )  ->  X  <_  ( 1  /  2
) )
1615iftrued 4094 . . 3  |-  ( X  e.  ( 0 [,] ( 1  /  2
) )  ->  if ( X  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  X ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  =  ( F `  ( 2  x.  X
) ) )
1716adantl 482 . 2  |-  ( (
ph  /\  X  e.  ( 0 [,] (
1  /  2 ) ) )  ->  if ( X  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  X ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  =  ( F `  ( 2  x.  X
) ) )
1813, 17eqtrd 2656 1  |-  ( (
ph  /\  X  e.  ( 0 [,] (
1  /  2 ) ) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  ( F `  ( 2  x.  X
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   [,]cicc 12178    Cn ccn 21028   IIcii 22678   *pcpco 22800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-icc 12182  df-top 20699  df-topon 20716  df-cn 21031  df-pco 22805
This theorem is referenced by:  pco0  22814  pcoass  22824  pcorevlem  22826
  Copyright terms: Public domain W3C validator