![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp4an | Structured version Visualization version Unicode version |
Description: An inference based on modus ponens. (Contributed by Jeff Madsen, 15-Jun-2010.) |
Ref | Expression |
---|---|
mp4an.1 |
![]() ![]() |
mp4an.2 |
![]() ![]() |
mp4an.3 |
![]() ![]() |
mp4an.4 |
![]() ![]() |
mp4an.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp4an |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp4an.1 |
. . 3
![]() ![]() | |
2 | mp4an.2 |
. . 3
![]() ![]() | |
3 | 1, 2 | pm3.2i 471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | mp4an.3 |
. . 3
![]() ![]() | |
5 | mp4an.4 |
. . 3
![]() ![]() | |
6 | 4, 5 | pm3.2i 471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
7 | mp4an.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 3, 6, 7 | mp2an 708 |
1
![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: noinfep 8557 1lt2nq 9795 m1p1sr 9913 m1m1sr 9914 axi2m1 9980 mul4i 10233 add4i 10260 add42i 10261 addsub4i 10377 muladdi 10481 lt2addi 10590 le2addi 10591 mulne0i 10670 divne0i 10773 divmuldivi 10785 divadddivi 10787 divdivdivi 10788 subreci 10855 8th4div3 11252 xrsup0 12153 fldiv4p1lem1div2 12636 sqrt2gt1lt2 14015 3dvds2dec 15056 3dvds2decOLD 15057 flodddiv4 15137 nprmi 15402 mod2xnegi 15775 catcfuccl 16759 catcxpccl 16847 iccpnfhmeo 22744 xrhmeo 22745 cnheiborlem 22753 pcoval1 22813 pcoval2 22816 pcoass 22824 lhop1lem 23776 efcvx 24203 dvrelog 24383 dvlog 24397 dvlog2 24399 dvsqrt 24483 dvcnsqrt 24485 cxpcn3 24489 ang180lem1 24539 dvatan 24662 log2cnv 24671 log2tlbnd 24672 log2ub 24676 harmonicbnd3 24734 ppiub 24929 bposlem8 25016 bposlem9 25017 lgsdir2lem1 25050 m1lgs 25113 2lgslem4 25131 2sqlem11 25154 chebbnd1 25161 usgrexmplef 26151 siilem1 27706 hvadd4i 27915 his35i 27946 bdophsi 28955 bdopcoi 28957 mdcompli 29288 dmdcompli 29289 xrge00 29686 sqsscirc1 29954 raddcn 29975 xrge0iifcnv 29979 xrge0iifiso 29981 xrge0iifhom 29983 esumcvgsum 30150 dstfrvclim1 30539 signsply0 30628 cvmlift2lem6 31290 cvmlift2lem12 31296 poimirlem9 33418 poimirlem15 33424 lhe4.4ex1a 38528 dvcosre 40126 wallispi 40287 fourierdlem57 40380 fourierdlem58 40381 fourierdlem112 40435 fouriersw 40448 tgblthelfgott 41703 tgblthelfgottOLD 41709 zlmodzxzequa 42285 zlmodzxzequap 42288 |
Copyright terms: Public domain | W3C validator |