MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifellem2 Structured version   Visualization version   Unicode version

Theorem pmtrdifellem2 17897
Description: Lemma 2 for pmtrdifel 17900. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t  |-  T  =  ran  (pmTrsp `  ( N  \  { K }
) )
pmtrdifel.r  |-  R  =  ran  (pmTrsp `  N
)
pmtrdifel.0  |-  S  =  ( (pmTrsp `  N
) `  dom  ( Q 
\  _I  ) )
Assertion
Ref Expression
pmtrdifellem2  |-  ( Q  e.  T  ->  dom  ( S  \  _I  )  =  dom  ( Q  \  _I  ) )

Proof of Theorem pmtrdifellem2
StepHypRef Expression
1 pmtrdifel.0 . . . 4  |-  S  =  ( (pmTrsp `  N
) `  dom  ( Q 
\  _I  ) )
21difeq1i 3724 . . 3  |-  ( S 
\  _I  )  =  ( ( (pmTrsp `  N ) `  dom  ( Q  \  _I  )
)  \  _I  )
32dmeqi 5325 . 2  |-  dom  ( S  \  _I  )  =  dom  ( ( (pmTrsp `  N ) `  dom  ( Q  \  _I  )
)  \  _I  )
4 eqid 2622 . . . . 5  |-  (pmTrsp `  ( N  \  { K } ) )  =  (pmTrsp `  ( N  \  { K } ) )
5 pmtrdifel.t . . . . 5  |-  T  =  ran  (pmTrsp `  ( N  \  { K }
) )
64, 5pmtrfb 17885 . . . 4  |-  ( Q  e.  T  <->  ( ( N  \  { K }
)  e.  _V  /\  Q : ( N  \  { K } ) -1-1-onto-> ( N 
\  { K }
)  /\  dom  ( Q 
\  _I  )  ~~  2o ) )
7 difsnexi 6970 . . . . 5  |-  ( ( N  \  { K } )  e.  _V  ->  N  e.  _V )
8 f1of 6137 . . . . . 6  |-  ( Q : ( N  \  { K } ) -1-1-onto-> ( N 
\  { K }
)  ->  Q :
( N  \  { K } ) --> ( N 
\  { K }
) )
9 fdm 6051 . . . . . 6  |-  ( Q : ( N  \  { K } ) --> ( N  \  { K } )  ->  dom  Q  =  ( N  \  { K } ) )
10 difssd 3738 . . . . . . . 8  |-  ( dom 
Q  =  ( N 
\  { K }
)  ->  ( Q  \  _I  )  C_  Q
)
11 dmss 5323 . . . . . . . 8  |-  ( ( Q  \  _I  )  C_  Q  ->  dom  ( Q 
\  _I  )  C_  dom  Q )
1210, 11syl 17 . . . . . . 7  |-  ( dom 
Q  =  ( N 
\  { K }
)  ->  dom  ( Q 
\  _I  )  C_  dom  Q )
13 difssd 3738 . . . . . . . 8  |-  ( dom 
Q  =  ( N 
\  { K }
)  ->  ( N  \  { K } ) 
C_  N )
14 sseq1 3626 . . . . . . . 8  |-  ( dom 
Q  =  ( N 
\  { K }
)  ->  ( dom  Q 
C_  N  <->  ( N  \  { K } ) 
C_  N ) )
1513, 14mpbird 247 . . . . . . 7  |-  ( dom 
Q  =  ( N 
\  { K }
)  ->  dom  Q  C_  N )
1612, 15sstrd 3613 . . . . . 6  |-  ( dom 
Q  =  ( N 
\  { K }
)  ->  dom  ( Q 
\  _I  )  C_  N )
178, 9, 163syl 18 . . . . 5  |-  ( Q : ( N  \  { K } ) -1-1-onto-> ( N 
\  { K }
)  ->  dom  ( Q 
\  _I  )  C_  N )
18 id 22 . . . . 5  |-  ( dom  ( Q  \  _I  )  ~~  2o  ->  dom  ( Q  \  _I  )  ~~  2o )
197, 17, 183anim123i 1247 . . . 4  |-  ( ( ( N  \  { K } )  e.  _V  /\  Q : ( N 
\  { K }
)
-1-1-onto-> ( N  \  { K } )  /\  dom  ( Q  \  _I  )  ~~  2o )  ->  ( N  e.  _V  /\  dom  ( Q  \  _I  )  C_  N  /\  dom  ( Q  \  _I  )  ~~  2o ) )
206, 19sylbi 207 . . 3  |-  ( Q  e.  T  ->  ( N  e.  _V  /\  dom  ( Q  \  _I  )  C_  N  /\  dom  ( Q  \  _I  )  ~~  2o ) )
21 eqid 2622 . . . 4  |-  (pmTrsp `  N )  =  (pmTrsp `  N )
2221pmtrmvd 17876 . . 3  |-  ( ( N  e.  _V  /\  dom  ( Q  \  _I  )  C_  N  /\  dom  ( Q  \  _I  )  ~~  2o )  ->  dom  ( ( (pmTrsp `  N ) `  dom  ( Q  \  _I  )
)  \  _I  )  =  dom  ( Q  \  _I  ) )
2320, 22syl 17 . 2  |-  ( Q  e.  T  ->  dom  ( ( (pmTrsp `  N ) `  dom  ( Q  \  _I  )
)  \  _I  )  =  dom  ( Q  \  _I  ) )
243, 23syl5eq 2668 1  |-  ( Q  e.  T  ->  dom  ( S  \  _I  )  =  dom  ( Q  \  _I  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653    _I cid 5023   dom cdm 5114   ran crn 5115   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  pmtrdifellem3  17898  pmtrdifellem4  17899
  Copyright terms: Public domain W3C validator