MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem4 Structured version   Visualization version   Unicode version

Theorem sylow3lem4 18045
Description: Lemma for sylow3 18048, first part. The number of Sylow subgroups is a divisor of the size of  G reduced by the size of a Sylow subgroup of  G. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x  |-  X  =  ( Base `  G
)
sylow3.g  |-  ( ph  ->  G  e.  Grp )
sylow3.xf  |-  ( ph  ->  X  e.  Fin )
sylow3.p  |-  ( ph  ->  P  e.  Prime )
sylow3lem1.a  |-  .+  =  ( +g  `  G )
sylow3lem1.d  |-  .-  =  ( -g `  G )
sylow3lem1.m  |-  .(+)  =  ( x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
sylow3lem2.k  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
sylow3lem2.h  |-  H  =  { u  e.  X  |  ( u  .(+)  K )  =  K }
sylow3lem2.n  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  K  <->  ( y  .+  x )  e.  K ) }
Assertion
Ref Expression
sylow3lem4  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
Distinct variable groups:    x, u, y, z,  .-    u,  .(+) , x, y, z    x, H, y    u, K, x, y, z    u, N, z    u, X, x, y, z    u, G, x, y, z    ph, u, x, y, z    u,  .+ , x, y, z    u, P, x, y, z
Allowed substitution hints:    H( z, u)    N( x, y)

Proof of Theorem sylow3lem4
StepHypRef Expression
1 sylow3.x . . 3  |-  X  =  ( Base `  G
)
2 sylow3.g . . 3  |-  ( ph  ->  G  e.  Grp )
3 sylow3.xf . . 3  |-  ( ph  ->  X  e.  Fin )
4 sylow3.p . . 3  |-  ( ph  ->  P  e.  Prime )
5 sylow3lem1.a . . 3  |-  .+  =  ( +g  `  G )
6 sylow3lem1.d . . 3  |-  .-  =  ( -g `  G )
7 sylow3lem1.m . . 3  |-  .(+)  =  ( x  e.  X , 
y  e.  ( P pSyl 
G )  |->  ran  (
z  e.  y  |->  ( ( x  .+  z
)  .-  x )
) )
8 sylow3lem2.k . . 3  |-  ( ph  ->  K  e.  ( P pSyl 
G ) )
9 sylow3lem2.h . . 3  |-  H  =  { u  e.  X  |  ( u  .(+)  K )  =  K }
10 sylow3lem2.n . . 3  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  K  <->  ( y  .+  x )  e.  K ) }
111, 2, 3, 4, 5, 6, 7, 8, 9, 10sylow3lem3 18044 . 2  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  =  ( # `  ( X /. ( G ~QG  N ) ) ) )
12 slwsubg 18025 . . . . . . . . . 10  |-  ( K  e.  ( P pSyl  G
)  ->  K  e.  (SubGrp `  G ) )
138, 12syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
14 eqid 2622 . . . . . . . . . . 11  |-  ( Gs  N )  =  ( Gs  N )
1510, 1, 5, 14nmznsg 17638 . . . . . . . . . 10  |-  ( K  e.  (SubGrp `  G
)  ->  K  e.  (NrmSGrp `  ( Gs  N ) ) )
16 nsgsubg 17626 . . . . . . . . . 10  |-  ( K  e.  (NrmSGrp `  ( Gs  N ) )  ->  K  e.  (SubGrp `  ( Gs  N ) ) )
1715, 16syl 17 . . . . . . . . 9  |-  ( K  e.  (SubGrp `  G
)  ->  K  e.  (SubGrp `  ( Gs  N ) ) )
1813, 17syl 17 . . . . . . . 8  |-  ( ph  ->  K  e.  (SubGrp `  ( Gs  N ) ) )
1910, 1, 5nmzsubg 17635 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
202, 19syl 17 . . . . . . . . . 10  |-  ( ph  ->  N  e.  (SubGrp `  G ) )
2114subgbas 17598 . . . . . . . . . 10  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  ( Gs  N
) ) )
2220, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  N  =  ( Base `  ( Gs  N ) ) )
231subgss 17595 . . . . . . . . . . 11  |-  ( N  e.  (SubGrp `  G
)  ->  N  C_  X
)
2420, 23syl 17 . . . . . . . . . 10  |-  ( ph  ->  N  C_  X )
25 ssfi 8180 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  N  C_  X )  ->  N  e.  Fin )
263, 24, 25syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  N  e.  Fin )
2722, 26eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  ( Base `  ( Gs  N ) )  e. 
Fin )
28 eqid 2622 . . . . . . . . 9  |-  ( Base `  ( Gs  N ) )  =  ( Base `  ( Gs  N ) )
2928lagsubg 17656 . . . . . . . 8  |-  ( ( K  e.  (SubGrp `  ( Gs  N ) )  /\  ( Base `  ( Gs  N
) )  e.  Fin )  ->  ( # `  K
)  ||  ( # `  ( Base `  ( Gs  N ) ) ) )
3018, 27, 29syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  ||  ( # `  ( Base `  ( Gs  N ) ) ) )
3122fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( # `  N
)  =  ( # `  ( Base `  ( Gs  N ) ) ) )
3230, 31breqtrrd 4681 . . . . . 6  |-  ( ph  ->  ( # `  K
)  ||  ( # `  N
) )
33 eqid 2622 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
3433subg0cl 17602 . . . . . . . . . . 11  |-  ( K  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  K
)
3513, 34syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  G
)  e.  K )
36 ne0i 3921 . . . . . . . . . 10  |-  ( ( 0g `  G )  e.  K  ->  K  =/=  (/) )
3735, 36syl 17 . . . . . . . . 9  |-  ( ph  ->  K  =/=  (/) )
381subgss 17595 . . . . . . . . . . . 12  |-  ( K  e.  (SubGrp `  G
)  ->  K  C_  X
)
3913, 38syl 17 . . . . . . . . . . 11  |-  ( ph  ->  K  C_  X )
40 ssfi 8180 . . . . . . . . . . 11  |-  ( ( X  e.  Fin  /\  K  C_  X )  ->  K  e.  Fin )
413, 39, 40syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  K  e.  Fin )
42 hashnncl 13157 . . . . . . . . . 10  |-  ( K  e.  Fin  ->  (
( # `  K )  e.  NN  <->  K  =/=  (/) ) )
4341, 42syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  K
)  e.  NN  <->  K  =/=  (/) ) )
4437, 43mpbird 247 . . . . . . . 8  |-  ( ph  ->  ( # `  K
)  e.  NN )
4544nnzd 11481 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  e.  ZZ )
46 hashcl 13147 . . . . . . . . 9  |-  ( N  e.  Fin  ->  ( # `
 N )  e. 
NN0 )
4726, 46syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  N
)  e.  NN0 )
4847nn0zd 11480 . . . . . . 7  |-  ( ph  ->  ( # `  N
)  e.  ZZ )
49 pwfi 8261 . . . . . . . . . . 11  |-  ( X  e.  Fin  <->  ~P X  e.  Fin )
503, 49sylib 208 . . . . . . . . . 10  |-  ( ph  ->  ~P X  e.  Fin )
51 eqid 2622 . . . . . . . . . . . . 13  |-  ( G ~QG  N )  =  ( G ~QG  N )
521, 51eqger 17644 . . . . . . . . . . . 12  |-  ( N  e.  (SubGrp `  G
)  ->  ( G ~QG  N
)  Er  X )
5320, 52syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( G ~QG  N )  Er  X
)
5453qsss 7808 . . . . . . . . . 10  |-  ( ph  ->  ( X /. ( G ~QG  N ) )  C_  ~P X )
55 ssfi 8180 . . . . . . . . . 10  |-  ( ( ~P X  e.  Fin  /\  ( X /. ( G ~QG  N ) )  C_  ~P X )  ->  ( X /. ( G ~QG  N ) )  e.  Fin )
5650, 54, 55syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( X /. ( G ~QG  N ) )  e. 
Fin )
57 hashcl 13147 . . . . . . . . 9  |-  ( ( X /. ( G ~QG  N ) )  e.  Fin  ->  ( # `  ( X /. ( G ~QG  N ) ) )  e.  NN0 )
5856, 57syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  e.  NN0 )
5958nn0zd 11480 . . . . . . 7  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  e.  ZZ )
60 dvdscmul 15008 . . . . . . 7  |-  ( ( ( # `  K
)  e.  ZZ  /\  ( # `  N )  e.  ZZ  /\  ( # `
 ( X /. ( G ~QG  N ) ) )  e.  ZZ )  -> 
( ( # `  K
)  ||  ( # `  N
)  ->  ( ( # `
 ( X /. ( G ~QG  N ) ) )  x.  ( # `  K
) )  ||  (
( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 N ) ) ) )
6145, 48, 59, 60syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  ||  ( # `  N
)  ->  ( ( # `
 ( X /. ( G ~QG  N ) ) )  x.  ( # `  K
) )  ||  (
( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 N ) ) ) )
6232, 61mpd 15 . . . . 5  |-  ( ph  ->  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 K ) ) 
||  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `  N
) ) )
63 hashcl 13147 . . . . . . . . 9  |-  ( X  e.  Fin  ->  ( # `
 X )  e. 
NN0 )
643, 63syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  X
)  e.  NN0 )
6564nn0cnd 11353 . . . . . . 7  |-  ( ph  ->  ( # `  X
)  e.  CC )
6644nncnd 11036 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  e.  CC )
6744nnne0d 11065 . . . . . . 7  |-  ( ph  ->  ( # `  K
)  =/=  0 )
6865, 66, 67divcan1d 10802 . . . . . 6  |-  ( ph  ->  ( ( ( # `  X )  /  ( # `
 K ) )  x.  ( # `  K
) )  =  (
# `  X )
)
691, 51, 20, 3lagsubg2 17655 . . . . . 6  |-  ( ph  ->  ( # `  X
)  =  ( (
# `  ( X /. ( G ~QG  N ) ) )  x.  ( # `  N
) ) )
7068, 69eqtrd 2656 . . . . 5  |-  ( ph  ->  ( ( ( # `  X )  /  ( # `
 K ) )  x.  ( # `  K
) )  =  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 N ) ) )
7162, 70breqtrrd 4681 . . . 4  |-  ( ph  ->  ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 K ) ) 
||  ( ( (
# `  X )  /  ( # `  K
) )  x.  ( # `
 K ) ) )
721lagsubg 17656 . . . . . . 7  |-  ( ( K  e.  (SubGrp `  G )  /\  X  e.  Fin )  ->  ( # `
 K )  ||  ( # `  X ) )
7313, 3, 72syl2anc 693 . . . . . 6  |-  ( ph  ->  ( # `  K
)  ||  ( # `  X
) )
7464nn0zd 11480 . . . . . . 7  |-  ( ph  ->  ( # `  X
)  e.  ZZ )
75 dvdsval2 14986 . . . . . . 7  |-  ( ( ( # `  K
)  e.  ZZ  /\  ( # `  K )  =/=  0  /\  ( # `
 X )  e.  ZZ )  ->  (
( # `  K ) 
||  ( # `  X
)  <->  ( ( # `  X )  /  ( # `
 K ) )  e.  ZZ ) )
7645, 67, 74, 75syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( # `  K
)  ||  ( # `  X
)  <->  ( ( # `  X )  /  ( # `
 K ) )  e.  ZZ ) )
7773, 76mpbid 222 . . . . 5  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  e.  ZZ )
78 dvdsmulcr 15011 . . . . 5  |-  ( ( ( # `  ( X /. ( G ~QG  N ) ) )  e.  ZZ  /\  ( ( # `  X
)  /  ( # `  K ) )  e.  ZZ  /\  ( (
# `  K )  e.  ZZ  /\  ( # `  K )  =/=  0
) )  ->  (
( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `
 K ) ) 
||  ( ( (
# `  X )  /  ( # `  K
) )  x.  ( # `
 K ) )  <-> 
( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( # `  K
) ) ) )
7959, 77, 45, 67, 78syl112anc 1330 . . . 4  |-  ( ph  ->  ( ( ( # `  ( X /. ( G ~QG  N ) ) )  x.  ( # `  K
) )  ||  (
( ( # `  X
)  /  ( # `  K ) )  x.  ( # `  K
) )  <->  ( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( # `  K
) ) ) )
8071, 79mpbid 222 . . 3  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( # `  K
) ) )
811, 3, 8slwhash 18039 . . . 4  |-  ( ph  ->  ( # `  K
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) )
8281oveq2d 6666 . . 3  |-  ( ph  ->  ( ( # `  X
)  /  ( # `  K ) )  =  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
8380, 82breqtrd 4679 . 2  |-  ( ph  ->  ( # `  ( X /. ( G ~QG  N ) ) )  ||  (
( # `  X )  /  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
8411, 83eqbrtrd 4675 1  |-  ( ph  ->  ( # `  ( P pSyl  G ) )  ||  ( ( # `  X
)  /  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    Er wer 7739   /.cqs 7741   Fincfn 7955   0cc0 9936    x. cmul 9941    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ^cexp 12860   #chash 13117    || cdvds 14983   Primecprime 15385    pCnt cpc 15541   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100   Grpcgrp 17422   -gcsg 17424  SubGrpcsubg 17588  NrmSGrpcnsg 17589   ~QG cqg 17590   pSyl cslw 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-ga 17723  df-od 17948  df-pgp 17950  df-slw 17951
This theorem is referenced by:  sylow3  18048
  Copyright terms: Public domain W3C validator