MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelop Structured version   Visualization version   Unicode version

Theorem rankelop 8737
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankelun.1  |-  A  e. 
_V
rankelun.2  |-  B  e. 
_V
rankelun.3  |-  C  e. 
_V
rankelun.4  |-  D  e. 
_V
Assertion
Ref Expression
rankelop  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  ( rank `  <. A ,  B >. )  e.  ( rank `  <. C ,  D >. ) )

Proof of Theorem rankelop
StepHypRef Expression
1 rankelun.1 . . . 4  |-  A  e. 
_V
2 rankelun.2 . . . 4  |-  B  e. 
_V
3 rankelun.3 . . . 4  |-  C  e. 
_V
4 rankelun.4 . . . 4  |-  D  e. 
_V
51, 2, 3, 4rankelpr 8736 . . 3  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  ( rank `  { A ,  B } )  e.  (
rank `  { C ,  D } ) )
6 rankon 8658 . . . . 5  |-  ( rank `  { C ,  D } )  e.  On
76onordi 5832 . . . 4  |-  Ord  ( rank `  { C ,  D } )
8 ordsucelsuc 7022 . . . 4  |-  ( Ord  ( rank `  { C ,  D }
)  ->  ( ( rank `  { A ,  B } )  e.  (
rank `  { C ,  D } )  <->  suc  ( rank `  { A ,  B } )  e.  suc  ( rank `  { C ,  D } ) ) )
97, 8ax-mp 5 . . 3  |-  ( (
rank `  { A ,  B } )  e.  ( rank `  { C ,  D }
)  <->  suc  ( rank `  { A ,  B }
)  e.  suc  ( rank `  { C ,  D } ) )
105, 9sylib 208 . 2  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  suc  ( rank `  { A ,  B } )  e. 
suc  ( rank `  { C ,  D }
) )
111, 2rankop 8721 . . 3  |-  ( rank `  <. A ,  B >. )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  B ) )
121, 2rankpr 8720 . . . 4  |-  ( rank `  { A ,  B } )  =  suc  ( ( rank `  A
)  u.  ( rank `  B ) )
13 suceq 5790 . . . 4  |-  ( (
rank `  { A ,  B } )  =  suc  ( ( rank `  A )  u.  ( rank `  B ) )  ->  suc  ( rank `  { A ,  B } )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  B ) ) )
1412, 13ax-mp 5 . . 3  |-  suc  ( rank `  { A ,  B } )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  B ) )
1511, 14eqtr4i 2647 . 2  |-  ( rank `  <. A ,  B >. )  =  suc  ( rank `  { A ,  B } )
163, 4rankop 8721 . . 3  |-  ( rank `  <. C ,  D >. )  =  suc  suc  ( ( rank `  C
)  u.  ( rank `  D ) )
173, 4rankpr 8720 . . . 4  |-  ( rank `  { C ,  D } )  =  suc  ( ( rank `  C
)  u.  ( rank `  D ) )
18 suceq 5790 . . . 4  |-  ( (
rank `  { C ,  D } )  =  suc  ( ( rank `  C )  u.  ( rank `  D ) )  ->  suc  ( rank `  { C ,  D } )  =  suc  suc  ( ( rank `  C
)  u.  ( rank `  D ) ) )
1917, 18ax-mp 5 . . 3  |-  suc  ( rank `  { C ,  D } )  =  suc  suc  ( ( rank `  C
)  u.  ( rank `  D ) )
2016, 19eqtr4i 2647 . 2  |-  ( rank `  <. C ,  D >. )  =  suc  ( rank `  { C ,  D } )
2110, 15, 203eltr4g 2718 1  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  ( rank `  <. A ,  B >. )  e.  ( rank `  <. C ,  D >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   {cpr 4179   <.cop 4183   Ord word 5722   suc csuc 5725   ` cfv 5888   rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator