MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recreclt Structured version   Visualization version   Unicode version

Theorem recreclt 10922
Description: Given a positive number  A, construct a new positive number less than both  A and 1. (Contributed by NM, 28-Dec-2005.)
Assertion
Ref Expression
recreclt  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  / 
( 1  +  ( 1  /  A ) ) )  <  1  /\  ( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )

Proof of Theorem recreclt
StepHypRef Expression
1 recgt0 10867 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  /  A ) )
2 gt0ne0 10493 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  =/=  0 )
3 rereccl 10743 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
( 1  /  A
)  e.  RR )
42, 3syldan 487 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  RR )
5 1re 10039 . . . . 5  |-  1  e.  RR
6 ltaddpos 10518 . . . . 5  |-  ( ( ( 1  /  A
)  e.  RR  /\  1  e.  RR )  ->  ( 0  <  (
1  /  A )  <->  1  <  ( 1  +  ( 1  /  A ) ) ) )
74, 5, 6sylancl 694 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  (
1  /  A )  <->  1  <  ( 1  +  ( 1  /  A ) ) ) )
81, 7mpbid 222 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
1  <  ( 1  +  ( 1  /  A ) ) )
9 readdcl 10019 . . . . 5  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 1  +  ( 1  /  A
) )  e.  RR )
105, 4, 9sylancr 695 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  +  ( 1  /  A ) )  e.  RR )
11 0lt1 10550 . . . . . 6  |-  0  <  1
12 0re 10040 . . . . . . . 8  |-  0  e.  RR
13 lttr 10114 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  (
1  +  ( 1  /  A ) )  e.  RR )  -> 
( ( 0  <  1  /\  1  < 
( 1  +  ( 1  /  A ) ) )  ->  0  <  ( 1  +  ( 1  /  A ) ) ) )
1412, 5, 13mp3an12 1414 . . . . . . 7  |-  ( ( 1  +  ( 1  /  A ) )  e.  RR  ->  (
( 0  <  1  /\  1  <  ( 1  +  ( 1  /  A ) ) )  ->  0  <  (
1  +  ( 1  /  A ) ) ) )
1510, 14syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 0  <  1  /\  1  < 
( 1  +  ( 1  /  A ) ) )  ->  0  <  ( 1  +  ( 1  /  A ) ) ) )
1611, 15mpani 712 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  <  (
1  +  ( 1  /  A ) )  ->  0  <  (
1  +  ( 1  /  A ) ) ) )
178, 16mpd 15 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  ( 1  +  ( 1  /  A ) ) )
18 recgt1 10919 . . . 4  |-  ( ( ( 1  +  ( 1  /  A ) )  e.  RR  /\  0  <  ( 1  +  ( 1  /  A
) ) )  -> 
( 1  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  1 ) )
1910, 17, 18syl2anc 693 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  1 ) )
208, 19mpbid 222 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  1 )
21 ltaddpos 10518 . . . . . 6  |-  ( ( 1  e.  RR  /\  ( 1  /  A
)  e.  RR )  ->  ( 0  <  1  <->  ( 1  /  A )  <  (
( 1  /  A
)  +  1 ) ) )
225, 4, 21sylancr 695 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 0  <  1  <->  ( 1  /  A )  <  ( ( 1  /  A )  +  1 ) ) )
2311, 22mpbii 223 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  <  ( (
1  /  A )  +  1 ) )
244recnd 10068 . . . . 5  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  e.  CC )
25 ax-1cn 9994 . . . . 5  |-  1  e.  CC
26 addcom 10222 . . . . 5  |-  ( ( ( 1  /  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( 1  /  A )  +  1 )  =  ( 1  +  ( 1  /  A ) ) )
2724, 25, 26sylancl 694 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  +  1 )  =  ( 1  +  ( 1  /  A ) ) )
2823, 27breqtrd 4679 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  A
)  <  ( 1  +  ( 1  /  A ) ) )
29 simpl 473 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A  e.  RR )
30 simpr 477 . . . 4  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
0  <  A )
31 ltrec1 10910 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( ( 1  +  ( 1  /  A ) )  e.  RR  /\  0  < 
( 1  +  ( 1  /  A ) ) ) )  -> 
( ( 1  /  A )  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )
3229, 30, 10, 17, 31syl22anc 1327 . . 3  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  /  A )  <  (
1  +  ( 1  /  A ) )  <-> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )
3328, 32mpbid 222 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( 1  /  (
1  +  ( 1  /  A ) ) )  <  A )
3420, 33jca 554 1  |-  ( ( A  e.  RR  /\  0  <  A )  -> 
( ( 1  / 
( 1  +  ( 1  /  A ) ) )  <  1  /\  ( 1  /  (
1  +  ( 1  /  A ) ) )  <  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator