| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoueqz | Structured version Visualization version Unicode version | ||
| Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 19273 instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uznzr.1 |
|
| uznzr.2 |
|
| uznzr.3 |
|
| uznzr.4 |
|
| uznzr.5 |
|
| Ref | Expression |
|---|---|
| rngoueqz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uznzr.1 |
. . . 4
| |
| 2 | uznzr.5 |
. . . 4
| |
| 3 | uznzr.3 |
. . . 4
| |
| 4 | 1, 2, 3 | rngo0cl 33718 |
. . 3
|
| 5 | en1eqsn 8190 |
. . . . . 6
| |
| 6 | 1 | rneqi 5352 |
. . . . . . . 8
|
| 7 | uznzr.2 |
. . . . . . . 8
| |
| 8 | uznzr.4 |
. . . . . . . 8
| |
| 9 | 6, 7, 8 | rngo1cl 33738 |
. . . . . . 7
|
| 10 | eleq2 2690 |
. . . . . . . . . 10
| |
| 11 | 10 | biimpd 219 |
. . . . . . . . 9
|
| 12 | elsni 4194 |
. . . . . . . . 9
| |
| 13 | 11, 12 | syl6com 37 |
. . . . . . . 8
|
| 14 | 2 | eqcomi 2631 |
. . . . . . . 8
|
| 15 | 13, 14 | eleq2s 2719 |
. . . . . . 7
|
| 16 | 9, 15 | syl 17 |
. . . . . 6
|
| 17 | 5, 16 | syl5com 31 |
. . . . 5
|
| 18 | 17 | ex 450 |
. . . 4
|
| 19 | 18 | com23 86 |
. . 3
|
| 20 | 4, 19 | mpcom 38 |
. 2
|
| 21 | 1, 2 | rngone0 33710 |
. . 3
|
| 22 | oveq2 6658 |
. . . . . 6
| |
| 23 | 22 | ralrimivw 2967 |
. . . . 5
|
| 24 | 3, 2, 1, 7 | rngorz 33722 |
. . . . . . 7
|
| 25 | 24 | ralrimiva 2966 |
. . . . . 6
|
| 26 | 2, 6 | eqtri 2644 |
. . . . . . . . 9
|
| 27 | 7, 26, 8 | rngoridm 33737 |
. . . . . . . 8
|
| 28 | 27 | ralrimiva 2966 |
. . . . . . 7
|
| 29 | r19.26 3064 |
. . . . . . . . . 10
| |
| 30 | r19.26 3064 |
. . . . . . . . . . . 12
| |
| 31 | eqtr 2641 |
. . . . . . . . . . . . . . . . . 18
| |
| 32 | eqtr 2641 |
. . . . . . . . . . . . . . . . . . 19
| |
| 33 | 32 | ex 450 |
. . . . . . . . . . . . . . . . . 18
|
| 34 | 31, 33 | syl 17 |
. . . . . . . . . . . . . . . . 17
|
| 35 | 34 | ex 450 |
. . . . . . . . . . . . . . . 16
|
| 36 | 35 | eqcoms 2630 |
. . . . . . . . . . . . . . 15
|
| 37 | 36 | imp31 448 |
. . . . . . . . . . . . . 14
|
| 38 | 37 | ralimi 2952 |
. . . . . . . . . . . . 13
|
| 39 | eqsn 4361 |
. . . . . . . . . . . . . . 15
| |
| 40 | ensn1g 8021 |
. . . . . . . . . . . . . . . . 17
| |
| 41 | 4, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
|
| 42 | breq1 4656 |
. . . . . . . . . . . . . . . 16
| |
| 43 | 41, 42 | syl5ibr 236 |
. . . . . . . . . . . . . . 15
|
| 44 | 39, 43 | syl6bir 244 |
. . . . . . . . . . . . . 14
|
| 45 | 44 | com3l 89 |
. . . . . . . . . . . . 13
|
| 46 | 38, 45 | syl 17 |
. . . . . . . . . . . 12
|
| 47 | 30, 46 | sylbir 225 |
. . . . . . . . . . 11
|
| 48 | 47 | ex 450 |
. . . . . . . . . 10
|
| 49 | 29, 48 | sylbir 225 |
. . . . . . . . 9
|
| 50 | 49 | ex 450 |
. . . . . . . 8
|
| 51 | 50 | com24 95 |
. . . . . . 7
|
| 52 | 28, 51 | mpcom 38 |
. . . . . 6
|
| 53 | 25, 52 | mpd 15 |
. . . . 5
|
| 54 | 23, 53 | syl5com 31 |
. . . 4
|
| 55 | 54 | com13 88 |
. . 3
|
| 56 | 21, 55 | mpcom 38 |
. 2
|
| 57 | 20, 56 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-om 7066 df-1st 7168 df-2nd 7169 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-grpo 27347 df-gid 27348 df-ablo 27399 df-ass 33642 df-exid 33644 df-mgmOLD 33648 df-sgrOLD 33660 df-mndo 33666 df-rngo 33694 |
| This theorem is referenced by: dvrunz 33753 isdmn3 33873 |
| Copyright terms: Public domain | W3C validator |