Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoueqz Structured version   Visualization version   Unicode version

Theorem rngoueqz 33739
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 19273 instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1  |-  G  =  ( 1st `  R
)
uznzr.2  |-  H  =  ( 2nd `  R
)
uznzr.3  |-  Z  =  (GId `  G )
uznzr.4  |-  U  =  (GId `  H )
uznzr.5  |-  X  =  ran  G
Assertion
Ref Expression
rngoueqz  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )

Proof of Theorem rngoueqz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4  |-  G  =  ( 1st `  R
)
2 uznzr.5 . . . 4  |-  X  =  ran  G
3 uznzr.3 . . . 4  |-  Z  =  (GId `  G )
41, 2, 3rngo0cl 33718 . . 3  |-  ( R  e.  RingOps  ->  Z  e.  X
)
5 en1eqsn 8190 . . . . . 6  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  X  =  { Z } )
61rneqi 5352 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
7 uznzr.2 . . . . . . . 8  |-  H  =  ( 2nd `  R
)
8 uznzr.4 . . . . . . . 8  |-  U  =  (GId `  H )
96, 7, 8rngo1cl 33738 . . . . . . 7  |-  ( R  e.  RingOps  ->  U  e.  ran  G )
10 eleq2 2690 . . . . . . . . . 10  |-  ( X  =  { Z }  ->  ( U  e.  X  <->  U  e.  { Z }
) )
1110biimpd 219 . . . . . . . . 9  |-  ( X  =  { Z }  ->  ( U  e.  X  ->  U  e.  { Z } ) )
12 elsni 4194 . . . . . . . . 9  |-  ( U  e.  { Z }  ->  U  =  Z )
1311, 12syl6com 37 . . . . . . . 8  |-  ( U  e.  X  ->  ( X  =  { Z }  ->  U  =  Z ) )
142eqcomi 2631 . . . . . . . 8  |-  ran  G  =  X
1513, 14eleq2s 2719 . . . . . . 7  |-  ( U  e.  ran  G  -> 
( X  =  { Z }  ->  U  =  Z ) )
169, 15syl 17 . . . . . 6  |-  ( R  e.  RingOps  ->  ( X  =  { Z }  ->  U  =  Z ) )
175, 16syl5com 31 . . . . 5  |-  ( ( Z  e.  X  /\  X  ~~  1o )  -> 
( R  e.  RingOps  ->  U  =  Z )
)
1817ex 450 . . . 4  |-  ( Z  e.  X  ->  ( X  ~~  1o  ->  ( R  e.  RingOps  ->  U  =  Z ) ) )
1918com23 86 . . 3  |-  ( Z  e.  X  ->  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) ) )
204, 19mpcom 38 . 2  |-  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) )
211, 2rngone0 33710 . . 3  |-  ( R  e.  RingOps  ->  X  =/=  (/) )
22 oveq2 6658 . . . . . 6  |-  ( U  =  Z  ->  (
x H U )  =  ( x H Z ) )
2322ralrimivw 2967 . . . . 5  |-  ( U  =  Z  ->  A. x  e.  X  ( x H U )  =  ( x H Z ) )
243, 2, 1, 7rngorz 33722 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H Z )  =  Z )
2524ralrimiva 2966 . . . . . 6  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H Z )  =  Z )
262, 6eqtri 2644 . . . . . . . . 9  |-  X  =  ran  ( 1st `  R
)
277, 26, 8rngoridm 33737 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H U )  =  x )
2827ralrimiva 2966 . . . . . . 7  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H U )  =  x )
29 r19.26 3064 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  <-> 
( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) ) )
30 r19.26 3064 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  <->  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z ) )
31 eqtr 2641 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  x  =  ( x H Z ) )
32 eqtr 2641 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  ( x H Z )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3332ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( x H Z )  ->  (
( x H Z )  =  Z  ->  x  =  Z )
)
3431, 33syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  ( ( x H Z )  =  Z  ->  x  =  Z ) )
3534ex 450 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( x H U )  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3635eqcoms 2630 . . . . . . . . . . . . . . 15  |-  ( ( x H U )  =  x  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3736imp31 448 . . . . . . . . . . . . . 14  |-  ( ( ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3837ralimi 2952 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  A. x  e.  X  x  =  Z )
39 eqsn 4361 . . . . . . . . . . . . . . 15  |-  ( X  =/=  (/)  ->  ( X  =  { Z }  <->  A. x  e.  X  x  =  Z ) )
40 ensn1g 8021 . . . . . . . . . . . . . . . . 17  |-  ( Z  e.  X  ->  { Z }  ~~  1o )
414, 40syl 17 . . . . . . . . . . . . . . . 16  |-  ( R  e.  RingOps  ->  { Z }  ~~  1o )
42 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( X  =  { Z }  ->  ( X  ~~  1o  <->  { Z }  ~~  1o ) )
4341, 42syl5ibr 236 . . . . . . . . . . . . . . 15  |-  ( X  =  { Z }  ->  ( R  e.  RingOps  ->  X  ~~  1o ) )
4439, 43syl6bir 244 . . . . . . . . . . . . . 14  |-  ( X  =/=  (/)  ->  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  X  ~~  1o ) ) )
4544com3l 89 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4638, 45syl 17 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4730, 46sylbir 225 . . . . . . . . . . 11  |-  ( ( A. x  e.  X  ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4847ex 450 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
4929, 48sylbir 225 . . . . . . . . 9  |-  ( ( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5049ex 450 . . . . . . . 8  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5150com24 95 . . . . . . 7  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  -> 
( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5228, 51mpcom 38 . . . . . 6  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5325, 52mpd 15 . . . . 5  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5423, 53syl5com 31 . . . 4  |-  ( U  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5554com13 88 . . 3  |-  ( X  =/=  (/)  ->  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) ) )
5621, 55mpcom 38 . 2  |-  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) )
5720, 56impbid 202 1  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   (/)c0 3915   {csn 4177   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   1oc1o 7553    ~~ cen 7952  GIdcgi 27344   RingOpscrngo 33693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-grpo 27347  df-gid 27348  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694
This theorem is referenced by:  dvrunz  33753  isdmn3  33873
  Copyright terms: Public domain W3C validator