Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem13 Structured version   Visualization version   Unicode version

Theorem btwnconn1lem13 32206
Description: Lemma for btwnconn1 32208. Begin back-filling and eliminating hypotheses. (Contributed by Scott Fenton, 9-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =  c  \/  D  =  d ) )

Proof of Theorem btwnconn1lem13
Dummy variables  e  p  q  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2795 . . 3  |-  ( C  =/=  c  <->  -.  C  =  c )
2 simp2rl 1130 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  C  Btwn  <. A ,  d
>. )
32adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  ->  C  Btwn  <. A ,  d
>. )
4 simp2ll 1128 . . . . . . . . . 10  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  D  Btwn  <. A ,  c
>. )
54adantr 481 . . . . . . . . 9  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  ->  D  Btwn  <. A ,  c
>. )
63, 5jca 554 . . . . . . . 8  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( C  Btwn  <. A , 
d >.  /\  D  Btwn  <. A ,  c >. ) )
7 simpl1 1064 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  N  e.  NN )
8 simprl1 1106 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  C  e.  ( EE `  N ) )
9 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  A  e.  ( EE `  N ) )
10 simprrl 804 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  d  e.  ( EE `  N ) )
11 btwncom 32121 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  -> 
( C  Btwn  <. A , 
d >. 
<->  C  Btwn  <. d ,  A >. ) )
127, 8, 9, 10, 11syl13anc 1328 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( C  Btwn  <. A ,  d >.  <->  C  Btwn  <. d ,  A >. ) )
13 simprl2 1107 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  D  e.  ( EE `  N ) )
14 simprl3 1108 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  c  e.  ( EE `  N ) )
15 btwncom 32121 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) ) )  -> 
( D  Btwn  <. A , 
c >. 
<->  D  Btwn  <. c ,  A >. ) )
167, 13, 9, 14, 15syl13anc 1328 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( D  Btwn  <. A ,  c >.  <->  D  Btwn  <. c ,  A >. ) )
1712, 16anbi12d 747 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. A ,  d
>.  /\  D  Btwn  <. A , 
c >. )  <->  ( C  Btwn  <. d ,  A >.  /\  D  Btwn  <. c ,  A >. ) ) )
186, 17syl5ib 234 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( C  Btwn  <. d ,  A >.  /\  D  Btwn  <.
c ,  A >. ) ) )
19 axpasch 25821 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( d  e.  ( EE `  N )  /\  c  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <.
d ,  A >.  /\  D  Btwn  <. c ,  A >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. ) ) )
207, 10, 14, 9, 8, 13, 19syl132anc 1344 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( C 
Btwn  <. d ,  A >.  /\  D  Btwn  <. c ,  A >. )  ->  E. e  e.  ( EE `  N
) ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. ) ) )
2118, 20syld 47 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )
2221imp 445 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c ) )  ->  E. e  e.  ( EE `  N ) ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )
23 simpll1 1100 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  N  e.  NN )
2414adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  c  e.  ( EE `  N
) )
258adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  C  e.  ( EE `  N
) )
2610adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  d  e.  ( EE `  N
) )
27 axsegcon 25807 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( c  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  d  e.  ( EE `  N
) ) )  ->  E. p  e.  ( EE `  N ) ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. ) )
2823, 24, 25, 25, 26, 27syl122anc 1335 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  E. p  e.  ( EE `  N
) ( C  Btwn  <.
c ,  p >.  /\ 
<. C ,  p >.Cgr <. C ,  d >. ) )
29 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  e  e.  ( EE `  N
) )
30 axsegcon 25807 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( d  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  e  e.  ( EE `  N
) ) )  ->  E. r  e.  ( EE `  N ) ( C  Btwn  <. d ,  r >.  /\  <. C , 
r >.Cgr <. C ,  e
>. ) )
3123, 26, 25, 25, 29, 30syl122anc 1335 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  E. r  e.  ( EE `  N
) ( C  Btwn  <.
d ,  r >.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )
32 reeanv 3107 . . . . . . . . 9  |-  ( E. p  e.  ( EE
`  N ) E. r  e.  ( EE
`  N ) ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )  <->  ( E. p  e.  ( EE `  N ) ( C 
Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr
<. C ,  d >.
)  /\  E. r  e.  ( EE `  N
) ( C  Btwn  <.
d ,  r >.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )
3328, 31, 32sylanbrc 698 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  E. p  e.  ( EE `  N
) E. r  e.  ( EE `  N
) ( ( C 
Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )
3433adantr 481 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  E. p  e.  ( EE `  N
) E. r  e.  ( EE `  N
) ( ( C 
Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr
<. C ,  d >.
)  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )
357ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  N  e.  NN )
36 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  p  e.  ( EE `  N ) )
37 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  r  e.  ( EE `  N ) )
38 axsegcon 25807 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  /\  ( r  e.  ( EE `  N )  /\  p  e.  ( EE `  N ) ) )  ->  E. q  e.  ( EE `  N
) ( r  Btwn  <.
p ,  q >.  /\  <. r ,  q
>.Cgr <. r ,  p >. ) )
3935, 36, 37, 37, 36, 38syl122anc 1335 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
p  e.  ( EE
`  N )  /\  r  e.  ( EE `  N ) ) )  ->  E. q  e.  ( EE `  N ) ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )
4039adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  ->  E. q  e.  ( EE `  N ) ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )
41 simp-4l 806 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) ) )
42 simplrl 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  ->  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  c  e.  ( EE `  N ) ) )
4342ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) ) )
4410ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
d  e.  ( EE
`  N ) )
45 simprrr 805 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  ->  b  e.  ( EE `  N ) )
4645ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
b  e.  ( EE
`  N ) )
47 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
e  e.  ( EE
`  N ) )
4844, 46, 473jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N )  /\  e  e.  ( EE `  N ) ) )
4943, 48jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
)  /\  e  e.  ( EE `  N ) ) ) )
50 simplrl 800 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  ->  p  e.  ( EE `  N ) )
51 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
q  e.  ( EE
`  N ) )
52 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
r  e.  ( EE
`  N ) )
5350, 51, 523jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( p  e.  ( EE `  N )  /\  q  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) ) )
5441, 49, 533jca 1242 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  -> 
( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  e  e.  ( EE `  N
) ) )  /\  ( p  e.  ( EE `  N )  /\  q  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) ) )
55 simp1ll 1124 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  A  =/=  B )
5655ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  ->  A  =/=  B )
5756adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  ->  A  =/=  B )
58 simp1lr 1125 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  ->  B  =/=  C )
5958ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  ->  B  =/=  C )
6059adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  ->  B  =/=  C )
61 simpllr 799 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  ->  C  =/=  c )
6261adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  ->  C  =/=  c )
6357, 60, 623jca 1242 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c
) )
64 simpl1r 1113 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )
6564ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )
6663, 65jca 554 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( A  =/= 
B  /\  B  =/=  C  /\  C  =/=  c
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) ) )
67 simpll2 1101 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  ->  ( ( D  Btwn  <. A ,  c
>.  /\  <. D ,  c
>.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) ) )
6867ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) ) )
69 simpl3l 1116 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. ) )
7069ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. ) )
71 simpl3r 1117 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  -> 
( d  Btwn  <. A , 
b >.  /\  <. d ,  b >.Cgr <. D ,  B >. ) )
7271ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( d  Btwn  <. A , 
b >.  /\  <. d ,  b >.Cgr <. D ,  B >. ) )
7370, 72jca 554 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( c  Btwn  <. A ,  b >.  /\ 
<. c ,  b >.Cgr <. C ,  B >. )  /\  ( d  Btwn  <. A ,  b >.  /\ 
<. d ,  b >.Cgr <. D ,  B >. ) ) )
7466, 68, 733jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )
75 simpllr 799 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )
76 simplrl 800 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. ) )
77 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( C  Btwn  <. d ,  r >.  /\  <. C ,  r >.Cgr <. C , 
e >. ) )
78 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )
7976, 77, 783jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( C  Btwn  <.
c ,  p >.  /\ 
<. C ,  p >.Cgr <. C ,  d >. )  /\  ( C  Btwn  <.
d ,  r >.  /\  <. C ,  r
>.Cgr <. C ,  e
>. )  /\  (
r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) )
8074, 75, 79jca32 558 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) )  -> 
( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. )  /\  (
r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) ) ) )
81 btwnconn1lem12 32205 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N )  /\  e  e.  ( EE `  N
) ) )  /\  ( p  e.  ( EE `  N )  /\  q  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( A  =/=  B  /\  B  =/=  C  /\  C  =/=  c )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  ( ( e  Btwn  <. C ,  c >.  /\  e  Btwn  <. D , 
d >. )  /\  (
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. )  /\  (
r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) ) ) )  ->  D  =  d )
8254, 80, 81syl2an 494 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  q  e.  ( EE `  N ) )  /\  ( ( ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) )  /\  ( r  Btwn  <. p ,  q >.  /\  <. r ,  q >.Cgr <. r ,  p >. ) ) )  ->  D  =  d )
8382an4s 869 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE `  N
)  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  /\  ( q  e.  ( EE `  N
)  /\  ( r  Btwn  <. p ,  q
>.  /\  <. r ,  q
>.Cgr <. r ,  p >. ) ) )  ->  D  =  d )
8440, 83rexlimddv 3035 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N
) ) )  /\  ( ( ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  ->  D  =  d )
8584an4s 869 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  (
( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N ) )  /\  ( d  e.  ( EE `  N )  /\  b  e.  ( EE `  N
) ) ) )  /\  e  e.  ( EE `  N ) )  /\  ( ( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  /\  (
( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  /\  ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) ) ) )  ->  D  =  d )
8685exp32 631 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  (
( p  e.  ( EE `  N )  /\  r  e.  ( EE `  N ) )  ->  ( (
( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )  ->  D  =  d ) ) )
8786rexlimdvv 3037 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  ( E. p  e.  ( EE `  N ) E. r  e.  ( EE
`  N ) ( ( C  Btwn  <. c ,  p >.  /\  <. C ,  p >.Cgr <. C ,  d
>. )  /\  ( C  Btwn  <. d ,  r
>.  /\  <. C ,  r
>.Cgr <. C ,  e
>. ) )  ->  D  =  d ) )
8834, 87mpd 15 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  e  e.  ( EE `  N
) )  /\  (
( ( ( ( A  =/=  B  /\  B  =/=  C )  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A , 
c >.  /\  <. D , 
c >.Cgr <. C ,  D >. )  /\  ( C 
Btwn  <. A ,  d
>.  /\  <. C ,  d
>.Cgr <. C ,  D >. ) )  /\  (
( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c )  /\  ( e  Btwn  <. C , 
c >.  /\  e  Btwn  <. D ,  d >. ) ) )  ->  D  =  d )
8988an4s 869 . . . . 5  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c ) )  /\  ( e  e.  ( EE `  N
)  /\  ( e  Btwn  <. C ,  c
>.  /\  e  Btwn  <. D , 
d >. ) ) )  ->  D  =  d )
9022, 89rexlimddv 3035 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( ( A  =/= 
B  /\  B  =/=  C )  /\  ( B 
Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) )  /\  C  =/=  c ) )  ->  D  =  d )
9190expr 643 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =/=  c  ->  D  =  d ) )
921, 91syl5bir 233 . 2  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( -.  C  =  c  ->  D  =  d ) )
9392orrd 393 1  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N )  /\  c  e.  ( EE `  N
) )  /\  (
d  e.  ( EE
`  N )  /\  b  e.  ( EE `  N ) ) ) )  /\  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( B  Btwn  <. A ,  C >.  /\  B  Btwn  <. A ,  D >. ) )  /\  ( ( D  Btwn  <. A ,  c >.  /\ 
<. D ,  c >.Cgr <. C ,  D >. )  /\  ( C  Btwn  <. A ,  d >.  /\ 
<. C ,  d >.Cgr <. C ,  D >. ) )  /\  ( ( c  Btwn  <. A , 
b >.  /\  <. c ,  b >.Cgr <. C ,  B >. )  /\  ( d 
Btwn  <. A ,  b
>.  /\  <. d ,  b
>.Cgr <. D ,  B >. ) ) ) )  ->  ( C  =  c  \/  D  =  d ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-colinear 32146  df-ifs 32147  df-cgr3 32148  df-fs 32149
This theorem is referenced by:  btwnconn1lem14  32207
  Copyright terms: Public domain W3C validator