MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatcrng Structured version   Visualization version   Unicode version

Theorem scmatcrng 20327
Description: The subring of scalar matrices (over a commutative ring) is a commutative ring. (Contributed by AV, 21-Aug-2019.)
Hypotheses
Ref Expression
scmatid.a  |-  A  =  ( N Mat  R )
scmatid.b  |-  B  =  ( Base `  A
)
scmatid.e  |-  E  =  ( Base `  R
)
scmatid.0  |-  .0.  =  ( 0g `  R )
scmatid.s  |-  S  =  ( N ScMat  R )
scmatcrng.c  |-  C  =  ( As  S )
Assertion
Ref Expression
scmatcrng  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  C  e.  CRing )

Proof of Theorem scmatcrng
Dummy variables  x  y  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 18558 . . . 4  |-  ( R  e.  CRing  ->  R  e.  Ring )
2 scmatid.a . . . . 5  |-  A  =  ( N Mat  R )
3 scmatid.b . . . . 5  |-  B  =  ( Base `  A
)
4 scmatid.e . . . . 5  |-  E  =  ( Base `  R
)
5 scmatid.0 . . . . 5  |-  .0.  =  ( 0g `  R )
6 scmatid.s . . . . 5  |-  S  =  ( N ScMat  R )
72, 3, 4, 5, 6scmatsrng 20326 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  S  e.  (SubRing `  A
) )
81, 7sylan2 491 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  S  e.  (SubRing `  A
) )
9 scmatcrng.c . . . 4  |-  C  =  ( As  S )
109subrgring 18783 . . 3  |-  ( S  e.  (SubRing `  A
)  ->  C  e.  Ring )
118, 10syl 17 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  C  e.  Ring )
12 simp1lr 1125 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  R  e.  CRing )
13 eqid 2622 . . . . . . . . 9  |-  ( Base `  A )  =  (
Base `  A )
14 simp2 1062 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  a  e.  N )
15 simp3 1063 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  b  e.  N )
162, 13, 6scmatmat 20315 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( x  e.  S  ->  x  e.  ( Base `  A ) ) )
1716imp 445 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  x  e.  S )  ->  x  e.  ( Base `  A ) )
1817adantrr 753 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  x  e.  ( Base `  A
) )
19183ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  x  e.  ( Base `  A ) )
202, 4, 13, 14, 15, 19matecld 20232 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  ( a x b )  e.  E )
212, 13, 6scmatmat 20315 . . . . . . . . . . . 12  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( y  e.  S  ->  y  e.  ( Base `  A ) ) )
2221imp 445 . . . . . . . . . . 11  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  y  e.  S )  ->  y  e.  ( Base `  A ) )
2322adantrl 752 . . . . . . . . . 10  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  y  e.  ( Base `  A
) )
24233ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  y  e.  ( Base `  A ) )
252, 4, 13, 14, 15, 24matecld 20232 . . . . . . . 8  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  ( a y b )  e.  E )
26 eqid 2622 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
274, 26crngcom 18562 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  (
a x b )  e.  E  /\  (
a y b )  e.  E )  -> 
( ( a x b ) ( .r
`  R ) ( a y b ) )  =  ( ( a y b ) ( .r `  R
) ( a x b ) ) )
2812, 20, 25, 27syl3anc 1326 . . . . . . 7  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  ( ( a x b ) ( .r
`  R ) ( a y b ) )  =  ( ( a y b ) ( .r `  R
) ( a x b ) ) )
2928ifeq1d 4104 . . . . . 6  |-  ( ( ( ( N  e. 
Fin  /\  R  e.  CRing
)  /\  ( x  e.  S  /\  y  e.  S ) )  /\  a  e.  N  /\  b  e.  N )  ->  if ( a  =  b ,  ( ( a x b ) ( .r `  R
) ( a y b ) ) ,  .0.  )  =  if ( a  =  b ,  ( ( a y b ) ( .r `  R ) ( a x b ) ) ,  .0.  ) )
3029mpt2eq3dva 6719 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
a  e.  N , 
b  e.  N  |->  if ( a  =  b ,  ( ( a x b ) ( .r `  R ) ( a y b ) ) ,  .0.  ) )  =  ( a  e.  N , 
b  e.  N  |->  if ( a  =  b ,  ( ( a y b ) ( .r `  R ) ( a x b ) ) ,  .0.  ) ) )
311anim2i 593 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( N  e.  Fin  /\  R  e.  Ring )
)
3231adantr 481 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  ( N  e.  Fin  /\  R  e.  Ring ) )
33 eqid 2622 . . . . . . . . . 10  |-  ( N DMat 
R )  =  ( N DMat  R )
342, 3, 4, 5, 6, 33scmatdmat 20321 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( x  e.  S  ->  x  e.  ( N DMat 
R ) ) )
351, 34sylan2 491 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( x  e.  S  ->  x  e.  ( N DMat 
R ) ) )
362, 3, 4, 5, 6, 33scmatdmat 20321 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( y  e.  S  ->  y  e.  ( N DMat 
R ) ) )
371, 36sylan2 491 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( y  e.  S  ->  y  e.  ( N DMat 
R ) ) )
3835, 37anim12d 586 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( ( x  e.  S  /\  y  e.  S )  ->  (
x  e.  ( N DMat 
R )  /\  y  e.  ( N DMat  R ) ) ) )
3938imp 445 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x  e.  ( N DMat 
R )  /\  y  e.  ( N DMat  R ) ) )
402, 3, 5, 33dmatmul 20303 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( x  e.  ( N DMat  R )  /\  y  e.  ( N DMat  R ) ) )  -> 
( x ( .r
`  A ) y )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  b ,  ( ( a x b ) ( .r
`  R ) ( a y b ) ) ,  .0.  )
) )
4132, 39, 40syl2anc 693 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( .r `  A ) y )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  b ,  ( ( a x b ) ( .r `  R ) ( a y b ) ) ,  .0.  ) ) )
4239ancomd 467 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
y  e.  ( N DMat 
R )  /\  x  e.  ( N DMat  R ) ) )
432, 3, 5, 33dmatmul 20303 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( y  e.  ( N DMat  R )  /\  x  e.  ( N DMat  R ) ) )  -> 
( y ( .r
`  A ) x )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  b ,  ( ( a y b ) ( .r
`  R ) ( a x b ) ) ,  .0.  )
) )
4432, 42, 43syl2anc 693 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
y ( .r `  A ) x )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  b ,  ( ( a y b ) ( .r `  R ) ( a x b ) ) ,  .0.  ) ) )
4530, 41, 443eqtr4d 2666 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( .r `  A ) y )  =  ( y ( .r `  A ) x ) )
4645ralrimivva 2971 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  A. x  e.  S  A. y  e.  S  ( x ( .r
`  A ) y )  =  ( y ( .r `  A
) x ) )
479subrgbas 18789 . . . . . 6  |-  ( S  e.  (SubRing `  A
)  ->  S  =  ( Base `  C )
)
4847eqcomd 2628 . . . . 5  |-  ( S  e.  (SubRing `  A
)  ->  ( Base `  C )  =  S )
49 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  A )  =  ( .r `  A
)
509, 49ressmulr 16006 . . . . . . . . 9  |-  ( S  e.  (SubRing `  A
)  ->  ( .r `  A )  =  ( .r `  C ) )
5150eqcomd 2628 . . . . . . . 8  |-  ( S  e.  (SubRing `  A
)  ->  ( .r `  C )  =  ( .r `  A ) )
5251oveqd 6667 . . . . . . 7  |-  ( S  e.  (SubRing `  A
)  ->  ( x
( .r `  C
) y )  =  ( x ( .r
`  A ) y ) )
5351oveqd 6667 . . . . . . 7  |-  ( S  e.  (SubRing `  A
)  ->  ( y
( .r `  C
) x )  =  ( y ( .r
`  A ) x ) )
5452, 53eqeq12d 2637 . . . . . 6  |-  ( S  e.  (SubRing `  A
)  ->  ( (
x ( .r `  C ) y )  =  ( y ( .r `  C ) x )  <->  ( x
( .r `  A
) y )  =  ( y ( .r
`  A ) x ) ) )
5548, 54raleqbidv 3152 . . . . 5  |-  ( S  e.  (SubRing `  A
)  ->  ( A. y  e.  ( Base `  C ) ( x ( .r `  C
) y )  =  ( y ( .r
`  C ) x )  <->  A. y  e.  S  ( x ( .r
`  A ) y )  =  ( y ( .r `  A
) x ) ) )
5648, 55raleqbidv 3152 . . . 4  |-  ( S  e.  (SubRing `  A
)  ->  ( A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) ( x ( .r `  C ) y )  =  ( y ( .r `  C ) x )  <->  A. x  e.  S  A. y  e.  S  ( x ( .r
`  A ) y )  =  ( y ( .r `  A
) x ) ) )
578, 56syl 17 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) ( x ( .r `  C ) y )  =  ( y ( .r `  C ) x )  <->  A. x  e.  S  A. y  e.  S  ( x ( .r
`  A ) y )  =  ( y ( .r `  A
) x ) ) )
5846, 57mpbird 247 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C ) ( x ( .r `  C
) y )  =  ( y ( .r
`  C ) x ) )
59 eqid 2622 . . 3  |-  ( Base `  C )  =  (
Base `  C )
60 eqid 2622 . . 3  |-  ( .r
`  C )  =  ( .r `  C
)
6159, 60iscrng2 18563 . 2  |-  ( C  e.  CRing 
<->  ( C  e.  Ring  /\ 
A. x  e.  (
Base `  C ) A. y  e.  ( Base `  C ) ( x ( .r `  C ) y )  =  ( y ( .r `  C ) x ) ) )
6211, 58, 61sylanbrc 698 1  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  C  e.  CRing )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ifcif 4086   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   Basecbs 15857   ↾s cress 15858   .rcmulr 15942   0gc0g 16100   Ringcrg 18547   CRingccrg 18548  SubRingcsubrg 18776   Mat cmat 20213   DMat cdmat 20294   ScMat cscmat 20295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-dmat 20296  df-scmat 20297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator