MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsubbas Structured version   Visualization version   Unicode version

Theorem fsubbas 21671
Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fsubbas  |-  ( X  e.  V  ->  (
( fi `  A
)  e.  ( fBas `  X )  <->  ( A  C_ 
~P X  /\  A  =/=  (/)  /\  -.  (/)  e.  ( fi `  A ) ) ) )

Proof of Theorem fsubbas
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbasne0 21634 . . . . . 6  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  ( fi `  A )  =/=  (/) )
2 fvprc 6185 . . . . . . 7  |-  ( -.  A  e.  _V  ->  ( fi `  A )  =  (/) )
32necon1ai 2821 . . . . . 6  |-  ( ( fi `  A )  =/=  (/)  ->  A  e.  _V )
41, 3syl 17 . . . . 5  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  A  e.  _V )
5 ssfii 8325 . . . . 5  |-  ( A  e.  _V  ->  A  C_  ( fi `  A
) )
64, 5syl 17 . . . 4  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  A  C_  ( fi `  A ) )
7 fbsspw 21636 . . . 4  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  ( fi `  A )  C_  ~P X )
86, 7sstrd 3613 . . 3  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  A  C_  ~P X )
9 fieq0 8327 . . . . . 6  |-  ( A  e.  _V  ->  ( A  =  (/)  <->  ( fi `  A )  =  (/) ) )
109necon3bid 2838 . . . . 5  |-  ( A  e.  _V  ->  ( A  =/=  (/)  <->  ( fi `  A )  =/=  (/) ) )
1110biimpar 502 . . . 4  |-  ( ( A  e.  _V  /\  ( fi `  A )  =/=  (/) )  ->  A  =/=  (/) )
124, 1, 11syl2anc 693 . . 3  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  A  =/=  (/) )
13 0nelfb 21635 . . 3  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  A ) )
148, 12, 133jca 1242 . 2  |-  ( ( fi `  A )  e.  ( fBas `  X
)  ->  ( A  C_ 
~P X  /\  A  =/=  (/)  /\  -.  (/)  e.  ( fi `  A ) ) )
15 simpr1 1067 . . . . 5  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A  C_  ~P X )
16 fipwss 8335 . . . . 5  |-  ( A 
C_  ~P X  ->  ( fi `  A )  C_  ~P X )
1715, 16syl 17 . . . 4  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( fi `  A )  C_  ~P X )
18 pwexg 4850 . . . . . . . 8  |-  ( X  e.  V  ->  ~P X  e.  _V )
1918adantr 481 . . . . . . 7  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ~P X  e. 
_V )
2019, 15ssexd 4805 . . . . . 6  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A  e.  _V )
21 simpr2 1068 . . . . . 6  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A  =/=  (/) )
2210biimpa 501 . . . . . 6  |-  ( ( A  e.  _V  /\  A  =/=  (/) )  ->  ( fi `  A )  =/=  (/) )
2320, 21, 22syl2anc 693 . . . . 5  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( fi `  A )  =/=  (/) )
24 simpr3 1069 . . . . . 6  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  -.  (/)  e.  ( fi `  A ) )
25 df-nel 2898 . . . . . 6  |-  ( (/)  e/  ( fi `  A
)  <->  -.  (/)  e.  ( fi `  A ) )
2624, 25sylibr 224 . . . . 5  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  (/)  e/  ( fi
`  A ) )
27 fiin 8328 . . . . . . . 8  |-  ( ( x  e.  ( fi
`  A )  /\  y  e.  ( fi `  A ) )  -> 
( x  i^i  y
)  e.  ( fi
`  A ) )
28 ssid 3624 . . . . . . . 8  |-  ( x  i^i  y )  C_  ( x  i^i  y
)
29 sseq1 3626 . . . . . . . . 9  |-  ( z  =  ( x  i^i  y )  ->  (
z  C_  ( x  i^i  y )  <->  ( x  i^i  y )  C_  (
x  i^i  y )
) )
3029rspcev 3309 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  e.  ( fi
`  A )  /\  ( x  i^i  y
)  C_  ( x  i^i  y ) )  ->  E. z  e.  ( fi `  A ) z 
C_  ( x  i^i  y ) )
3127, 28, 30sylancl 694 . . . . . . 7  |-  ( ( x  e.  ( fi
`  A )  /\  y  e.  ( fi `  A ) )  ->  E. z  e.  ( fi `  A ) z 
C_  ( x  i^i  y ) )
3231rgen2a 2977 . . . . . 6  |-  A. x  e.  ( fi `  A
) A. y  e.  ( fi `  A
) E. z  e.  ( fi `  A
) z  C_  (
x  i^i  y )
3332a1i 11 . . . . 5  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  A. x  e.  ( fi `  A ) A. y  e.  ( fi `  A ) E. z  e.  ( fi `  A ) z  C_  ( x  i^i  y ) )
3423, 26, 333jca 1242 . . . 4  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( ( fi
`  A )  =/=  (/)  /\  (/)  e/  ( fi
`  A )  /\  A. x  e.  ( fi
`  A ) A. y  e.  ( fi `  A ) E. z  e.  ( fi `  A
) z  C_  (
x  i^i  y )
) )
35 isfbas2 21639 . . . . 5  |-  ( X  e.  V  ->  (
( fi `  A
)  e.  ( fBas `  X )  <->  ( ( fi `  A )  C_  ~P X  /\  (
( fi `  A
)  =/=  (/)  /\  (/)  e/  ( fi `  A )  /\  A. x  e.  ( fi
`  A ) A. y  e.  ( fi `  A ) E. z  e.  ( fi `  A
) z  C_  (
x  i^i  y )
) ) ) )
3635adantr 481 . . . 4  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( ( fi
`  A )  e.  ( fBas `  X
)  <->  ( ( fi
`  A )  C_  ~P X  /\  (
( fi `  A
)  =/=  (/)  /\  (/)  e/  ( fi `  A )  /\  A. x  e.  ( fi
`  A ) A. y  e.  ( fi `  A ) E. z  e.  ( fi `  A
) z  C_  (
x  i^i  y )
) ) ) )
3717, 34, 36mpbir2and 957 . . 3  |-  ( ( X  e.  V  /\  ( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) ) )  ->  ( fi `  A )  e.  (
fBas `  X )
)
3837ex 450 . 2  |-  ( X  e.  V  ->  (
( A  C_  ~P X  /\  A  =/=  (/)  /\  -.  (/) 
e.  ( fi `  A ) )  -> 
( fi `  A
)  e.  ( fBas `  X ) ) )
3914, 38impbid2 216 1  |-  ( X  e.  V  ->  (
( fi `  A
)  e.  ( fBas `  X )  <->  ( A  C_ 
~P X  /\  A  =/=  (/)  /\  -.  (/)  e.  ( fi `  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   ` cfv 5888   ficfi 8316   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-fbas 19743
This theorem is referenced by:  isufil2  21712  ufileu  21723  filufint  21724  fmfnfm  21762  hausflim  21785  flimclslem  21788  fclsfnflim  21831  flimfnfcls  21832  fclscmp  21834
  Copyright terms: Public domain W3C validator