| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem18 | Structured version Visualization version Unicode version | ||
| Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem18.1 |
|
| stoweidlem18.2 |
|
| stoweidlem18.3 |
|
| stoweidlem18.4 |
|
| stoweidlem18.5 |
|
| stoweidlem18.6 |
|
| stoweidlem18.7 |
|
| stoweidlem18.8 |
|
| Ref | Expression |
|---|---|
| stoweidlem18 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem18.3 |
. . 3
| |
| 2 | 1re 10039 |
. . . 4
| |
| 3 | stoweidlem18.5 |
. . . . 5
| |
| 4 | 3 | stoweidlem4 40221 |
. . . 4
|
| 5 | 2, 4 | mpan2 707 |
. . 3
|
| 6 | 1, 5 | syl5eqel 2705 |
. 2
|
| 7 | stoweidlem18.2 |
. . 3
| |
| 8 | 0le1 10551 |
. . . . . 6
| |
| 9 | simpr 477 |
. . . . . . 7
| |
| 10 | 1 | fvmpt2 6291 |
. . . . . . 7
|
| 11 | 9, 2, 10 | sylancl 694 |
. . . . . 6
|
| 12 | 8, 11 | syl5breqr 4691 |
. . . . 5
|
| 13 | 1le1 10655 |
. . . . . 6
| |
| 14 | 11, 13 | syl6eqbr 4692 |
. . . . 5
|
| 15 | 12, 14 | jca 554 |
. . . 4
|
| 16 | 15 | ex 450 |
. . 3
|
| 17 | 7, 16 | ralrimi 2957 |
. 2
|
| 18 | stoweidlem18.8 |
. . 3
| |
| 19 | stoweidlem18.1 |
. . . . 5
| |
| 20 | nfcv 2764 |
. . . . 5
| |
| 21 | 19, 20 | nfeq 2776 |
. . . 4
|
| 22 | 21 | rzalf 39176 |
. . 3
|
| 23 | 18, 22 | syl 17 |
. 2
|
| 24 | 1red 10055 |
. . . . . . 7
| |
| 25 | stoweidlem18.7 |
. . . . . . 7
| |
| 26 | 24, 25 | ltsubrpd 11904 |
. . . . . 6
|
| 27 | 26 | adantr 481 |
. . . . 5
|
| 28 | stoweidlem18.6 |
. . . . . . . 8
| |
| 29 | stoweidlem18.4 |
. . . . . . . . 9
| |
| 30 | 29 | cldss 20833 |
. . . . . . . 8
|
| 31 | 28, 30 | syl 17 |
. . . . . . 7
|
| 32 | 31 | sselda 3603 |
. . . . . 6
|
| 33 | 32, 2, 10 | sylancl 694 |
. . . . 5
|
| 34 | 27, 33 | breqtrrd 4681 |
. . . 4
|
| 35 | 34 | ex 450 |
. . 3
|
| 36 | 7, 35 | ralrimi 2957 |
. 2
|
| 37 | nfcv 2764 |
. . . . . 6
| |
| 38 | nfmpt1 4747 |
. . . . . . 7
| |
| 39 | 1, 38 | nfcxfr 2762 |
. . . . . 6
|
| 40 | 37, 39 | nfeq 2776 |
. . . . 5
|
| 41 | fveq1 6190 |
. . . . . . 7
| |
| 42 | 41 | breq2d 4665 |
. . . . . 6
|
| 43 | 41 | breq1d 4663 |
. . . . . 6
|
| 44 | 42, 43 | anbi12d 747 |
. . . . 5
|
| 45 | 40, 44 | ralbid 2983 |
. . . 4
|
| 46 | 41 | breq1d 4663 |
. . . . 5
|
| 47 | 40, 46 | ralbid 2983 |
. . . 4
|
| 48 | 41 | breq2d 4665 |
. . . . 5
|
| 49 | 40, 48 | ralbid 2983 |
. . . 4
|
| 50 | 45, 47, 49 | 3anbi123d 1399 |
. . 3
|
| 51 | 50 | rspcev 3309 |
. 2
|
| 52 | 6, 17, 23, 36, 51 | syl13anc 1328 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-rp 11833 df-top 20699 df-cld 20823 |
| This theorem is referenced by: stoweidlem58 40275 |
| Copyright terms: Public domain | W3C validator |