| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem19 | Structured version Visualization version Unicode version | ||
| Description: If a set of real functions is closed under multiplication and it contains constants, then it is closed under finite exponentiation. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| stoweidlem19.1 |
|
| stoweidlem19.2 |
|
| stoweidlem19.3 |
|
| stoweidlem19.4 |
|
| stoweidlem19.5 |
|
| stoweidlem19.6 |
|
| stoweidlem19.7 |
|
| Ref | Expression |
|---|---|
| stoweidlem19 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem19.7 |
. 2
| |
| 2 | oveq2 6658 |
. . . . . 6
| |
| 3 | 2 | mpteq2dv 4745 |
. . . . 5
|
| 4 | 3 | eleq1d 2686 |
. . . 4
|
| 5 | 4 | imbi2d 330 |
. . 3
|
| 6 | oveq2 6658 |
. . . . . 6
| |
| 7 | 6 | mpteq2dv 4745 |
. . . . 5
|
| 8 | 7 | eleq1d 2686 |
. . . 4
|
| 9 | 8 | imbi2d 330 |
. . 3
|
| 10 | oveq2 6658 |
. . . . . 6
| |
| 11 | 10 | mpteq2dv 4745 |
. . . . 5
|
| 12 | 11 | eleq1d 2686 |
. . . 4
|
| 13 | 12 | imbi2d 330 |
. . 3
|
| 14 | oveq2 6658 |
. . . . . 6
| |
| 15 | 14 | mpteq2dv 4745 |
. . . . 5
|
| 16 | 15 | eleq1d 2686 |
. . . 4
|
| 17 | 16 | imbi2d 330 |
. . 3
|
| 18 | stoweidlem19.2 |
. . . . 5
| |
| 19 | stoweidlem19.6 |
. . . . . . . . 9
| |
| 20 | 19 | ancli 574 |
. . . . . . . . 9
|
| 21 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 22 | 21 | anbi2d 740 |
. . . . . . . . . . 11
|
| 23 | feq1 6026 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | imbi12d 334 |
. . . . . . . . . 10
|
| 25 | stoweidlem19.3 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | vtoclg 3266 |
. . . . . . . . 9
|
| 27 | 19, 20, 26 | sylc 65 |
. . . . . . . 8
|
| 28 | 27 | ffvelrnda 6359 |
. . . . . . 7
|
| 29 | recn 10026 |
. . . . . . 7
| |
| 30 | exp0 12864 |
. . . . . . 7
| |
| 31 | 28, 29, 30 | 3syl 18 |
. . . . . 6
|
| 32 | 31 | eqcomd 2628 |
. . . . 5
|
| 33 | 18, 32 | mpteq2da 4743 |
. . . 4
|
| 34 | 1re 10039 |
. . . . 5
| |
| 35 | stoweidlem19.5 |
. . . . . 6
| |
| 36 | 35 | stoweidlem4 40221 |
. . . . 5
|
| 37 | 34, 36 | mpan2 707 |
. . . 4
|
| 38 | 33, 37 | eqeltrrd 2702 |
. . 3
|
| 39 | simpr 477 |
. . . . 5
| |
| 40 | simpll 790 |
. . . . 5
| |
| 41 | simplr 792 |
. . . . . 6
| |
| 42 | 39, 41 | mpd 15 |
. . . . 5
|
| 43 | nfv 1843 |
. . . . . . . 8
| |
| 44 | nfmpt1 4747 |
. . . . . . . . 9
| |
| 45 | 44 | nfel1 2779 |
. . . . . . . 8
|
| 46 | 18, 43, 45 | nf3an 1831 |
. . . . . . 7
|
| 47 | simpl1 1064 |
. . . . . . . . 9
| |
| 48 | simpr 477 |
. . . . . . . . 9
| |
| 49 | 28 | recnd 10068 |
. . . . . . . . 9
|
| 50 | 47, 48, 49 | syl2anc 693 |
. . . . . . . 8
|
| 51 | simpl2 1065 |
. . . . . . . 8
| |
| 52 | 50, 51 | expp1d 13009 |
. . . . . . 7
|
| 53 | 46, 52 | mpteq2da 4743 |
. . . . . 6
|
| 54 | 28 | 3adant2 1080 |
. . . . . . . . . . . 12
|
| 55 | simp2 1062 |
. . . . . . . . . . . 12
| |
| 56 | 54, 55 | reexpcld 13025 |
. . . . . . . . . . 11
|
| 57 | 47, 51, 48, 56 | syl3anc 1326 |
. . . . . . . . . 10
|
| 58 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 59 | 58 | fvmpt2 6291 |
. . . . . . . . . . 11
|
| 60 | 59 | eqcomd 2628 |
. . . . . . . . . 10
|
| 61 | 48, 57, 60 | syl2anc 693 |
. . . . . . . . 9
|
| 62 | 61 | oveq1d 6665 |
. . . . . . . 8
|
| 63 | 46, 62 | mpteq2da 4743 |
. . . . . . 7
|
| 64 | 19 | adantr 481 |
. . . . . . . . 9
|
| 65 | 44 | nfeq2 2780 |
. . . . . . . . . 10
|
| 66 | stoweidlem19.1 |
. . . . . . . . . . 11
| |
| 67 | 66 | nfeq2 2780 |
. . . . . . . . . 10
|
| 68 | stoweidlem19.4 |
. . . . . . . . . 10
| |
| 69 | 65, 67, 68 | stoweidlem6 40223 |
. . . . . . . . 9
|
| 70 | 64, 69 | mpd3an3 1425 |
. . . . . . . 8
|
| 71 | 70 | 3adant2 1080 |
. . . . . . 7
|
| 72 | 63, 71 | eqeltrd 2701 |
. . . . . 6
|
| 73 | 53, 72 | eqeltrd 2701 |
. . . . 5
|
| 74 | 39, 40, 42, 73 | syl3anc 1326 |
. . . 4
|
| 75 | 74 | exp31 630 |
. . 3
|
| 76 | 5, 9, 13, 17, 38, 75 | nn0ind 11472 |
. 2
|
| 77 | 1, 76 | mpcom 38 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-seq 12802 df-exp 12861 |
| This theorem is referenced by: stoweidlem40 40257 |
| Copyright terms: Public domain | W3C validator |