MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgpopn Structured version   Visualization version   Unicode version

Theorem qustgpopn 21923
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
qustgpopn.x  |-  X  =  ( Base `  G
)
qustgpopn.j  |-  J  =  ( TopOpen `  G )
qustgpopn.k  |-  K  =  ( TopOpen `  H )
qustgpopn.f  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
Assertion
Ref Expression
qustgpopn  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  K
)
Distinct variable groups:    x, G    x, J    x, S    x, X    x, H    x, K    x, Y
Allowed substitution hint:    F( x)

Proof of Theorem qustgpopn
Dummy variables  a  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . . . 4  |-  ( F
" S )  C_  ran  F
2 qustgp.h . . . . . . 7  |-  H  =  ( G  /.s  ( G ~QG  Y
) )
32a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  H  =  ( G  /.s  ( G ~QG  Y ) ) )
4 qustgpopn.x . . . . . . 7  |-  X  =  ( Base `  G
)
54a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  X  =  ( Base `  G )
)
6 qustgpopn.f . . . . . 6  |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )
7 ovex 6678 . . . . . . 7  |-  ( G ~QG  Y )  e.  _V
87a1i 11 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( G ~QG  Y
)  e.  _V )
9 simp1 1061 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  G  e.  TopGrp )
103, 5, 6, 8, 9quslem 16203 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  F : X -onto-> ( X /. ( G ~QG  Y ) ) )
11 forn 6118 . . . . 5  |-  ( F : X -onto-> ( X /. ( G ~QG  Y ) )  ->  ran  F  =  ( X /. ( G ~QG  Y ) ) )
1210, 11syl 17 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ran  F  =  ( X /. ( G ~QG  Y ) ) )
131, 12syl5sseq 3653 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  C_  ( X /. ( G ~QG  Y ) ) )
14 eceq1 7782 . . . . . . . . . 10  |-  ( x  =  y  ->  [ x ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y ) )
1514cbvmptv 4750 . . . . . . . . 9  |-  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )  =  ( y  e.  X  |->  [ y ] ( G ~QG  Y ) )
166, 15eqtri 2644 . . . . . . . 8  |-  F  =  ( y  e.  X  |->  [ y ] ( G ~QG  Y ) )
1716mptpreima 5628 . . . . . . 7  |-  ( `' F " ( F
" S ) )  =  { y  e.  X  |  [ y ] ( G ~QG  Y )  e.  ( F " S ) }
1817rabeq2i 3197 . . . . . 6  |-  ( y  e.  ( `' F " ( F " S
) )  <->  ( y  e.  X  /\  [ y ] ( G ~QG  Y )  e.  ( F " S ) ) )
196funmpt2 5927 . . . . . . . . 9  |-  Fun  F
20 fvelima 6248 . . . . . . . . 9  |-  ( ( Fun  F  /\  [
y ] ( G ~QG  Y )  e.  ( F
" S ) )  ->  E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y ) )
2119, 20mpan 706 . . . . . . . 8  |-  ( [ y ] ( G ~QG  Y )  e.  ( F
" S )  ->  E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y ) )
22 qustgpopn.j . . . . . . . . . . . . . . . . . . 19  |-  J  =  ( TopOpen `  G )
2322, 4tgptopon 21886 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
249, 23syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  J  e.  (TopOn `  X ) )
25 simp3 1063 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  S  e.  J )
26 toponss 20731 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  (TopOn `  X )  /\  S  e.  J )  ->  S  C_  X )
2724, 25, 26syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  S  C_  X
)
2827adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  S  C_  X )
2928sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  z  e.  X )
30 eceq1 7782 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  [ x ] ( G ~QG  Y )  =  [ z ] ( G ~QG  Y ) )
31 ecexg 7746 . . . . . . . . . . . . . . . 16  |-  ( ( G ~QG  Y )  e.  _V  ->  [ z ] ( G ~QG  Y )  e.  _V )
327, 31ax-mp 5 . . . . . . . . . . . . . . 15  |-  [ z ] ( G ~QG  Y )  e.  _V
3330, 6, 32fvmpt 6282 . . . . . . . . . . . . . 14  |-  ( z  e.  X  ->  ( F `  z )  =  [ z ] ( G ~QG  Y ) )
3429, 33syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  ( F `  z )  =  [ z ] ( G ~QG  Y ) )
3534eqeq1d 2624 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <->  [ z ] ( G ~QG  Y )  =  [
y ] ( G ~QG  Y ) ) )
36 eqcom 2629 . . . . . . . . . . . 12  |-  ( [ z ] ( G ~QG  Y )  =  [ y ] ( G ~QG  Y )  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) )
3735, 36syl6bb 276 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) ) )
38 nsgsubg 17626 . . . . . . . . . . . . . . 15  |-  ( Y  e.  (NrmSGrp `  G
)  ->  Y  e.  (SubGrp `  G ) )
39383ad2ant2 1083 . . . . . . . . . . . . . 14  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  Y  e.  (SubGrp `  G ) )
4039ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  Y  e.  (SubGrp `  G )
)
41 eqid 2622 . . . . . . . . . . . . . 14  |-  ( G ~QG  Y )  =  ( G ~QG  Y )
424, 41eqger 17644 . . . . . . . . . . . . 13  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G ~QG  Y
)  Er  X )
4340, 42syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  ( G ~QG  Y )  Er  X
)
44 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  y  e.  X )
4543, 44erth 7791 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
y ( G ~QG  Y ) z  <->  [ y ] ( G ~QG  Y )  =  [
z ] ( G ~QG  Y ) ) )
469ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  G  e.  TopGrp )
474subgss 17595 . . . . . . . . . . . . 13  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
4840, 47syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  Y  C_  X )
49 eqid 2622 . . . . . . . . . . . . 13  |-  ( invg `  G )  =  ( invg `  G )
50 eqid 2622 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
514, 49, 50, 41eqgval 17643 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  Y  C_  X )  ->  (
y ( G ~QG  Y ) z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
5246, 48, 51syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
y ( G ~QG  Y ) z  <->  ( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y ) ) )
5337, 45, 523bitr2d 296 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  <-> 
( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) ) )
54 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  (oppg `  G
)  =  (oppg `  G
)
55 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( +g  `  (oppg
`  G ) )  =  ( +g  `  (oppg `  G
) )
5650, 54, 55oppgplus 17779 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a )  =  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )
5756mpteq2i 4741 . . . . . . . . . . . . . . . 16  |-  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  =  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
5846adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  G  e.  TopGrp )
5954oppgtgp 21902 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  (oppg
`  G )  e. 
TopGrp )
6058, 59syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (oppg `  G
)  e.  TopGrp )
6148sselda 3603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X )
62 eqid 2622 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  =  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )
6354, 4oppgbas 17781 . . . . . . . . . . . . . . . . . 18  |-  X  =  ( Base `  (oppg `  G
) )
6454, 22oppgtopn 17783 . . . . . . . . . . . . . . . . . 18  |-  J  =  ( TopOpen `  (oppg
`  G ) )
6562, 63, 55, 64tgplacthmeo 21907 . . . . . . . . . . . . . . . . 17  |-  ( ( (oppg
`  G )  e. 
TopGrp  /\  ( ( ( invg `  G
) `  y )
( +g  `  G ) z )  e.  X
)  ->  ( a  e.  X  |->  ( ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ( +g  `  (oppg `  G
) ) a ) )  e.  ( J
Homeo J ) )
6660, 61, 65syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ( +g  `  (oppg
`  G ) ) a ) )  e.  ( J Homeo J ) )
6757, 66syl5eqelr 2706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J Homeo J ) )
68 hmeocn 21563 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J Homeo J )  ->  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Cn  J ) )
6967, 68syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( J  Cn  J ) )
7025ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  S  e.  J )
71 cnima 21069 . . . . . . . . . . . . . 14  |-  ( ( ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  e.  ( J  Cn  J )  /\  S  e.  J )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  e.  J )
7269, 70, 71syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  e.  J )
7344adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  y  e.  X )
74 tgpgrp 21882 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
7558, 74syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  G  e.  Grp )
76 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  G )  =  ( 0g `  G
)
774, 50, 76, 49grprinv 17469 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( y ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( 0g
`  G ) )
7875, 73, 77syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) )  =  ( 0g `  G ) )
7978oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( y ( +g  `  G ) ( ( invg `  G
) `  y )
) ( +g  `  G
) z )  =  ( ( 0g `  G ) ( +g  `  G ) z ) )
804, 49grpinvcl 17467 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  X )  ->  ( ( invg `  G ) `  y
)  e.  X )
8175, 73, 80syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( invg `  G ) `  y
)  e.  X )
8229adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  z  e.  X )
834, 50grpass 17431 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  ( ( invg `  G ) `  y
)  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) ( ( invg `  G ) `
 y ) ) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
8475, 73, 81, 82, 83syl13anc 1328 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( y ( +g  `  G ) ( ( invg `  G
) `  y )
) ( +g  `  G
) z )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
854, 50, 76grplid 17452 . . . . . . . . . . . . . . . . 17  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( 0g `  G ) ( +g  `  G ) z )  =  z )
8675, 82, 85syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
( 0g `  G
) ( +g  `  G
) z )  =  z )
8779, 84, 863eqtr3d 2664 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  =  z )
88 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  z  e.  S )
8987, 88eqeltrd 2701 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  (
y ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S )
90 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( a  =  y  ->  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  =  ( y ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )
9190eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( a  =  y  ->  (
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  <->  ( y
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  S ) )
92 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  =  ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
9392mptpreima 5628 . . . . . . . . . . . . . . 15  |-  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) " S )  =  { a  e.  X  |  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S }
9491, 93elrab2 3366 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  <->  ( y  e.  X  /\  (
y ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S ) )
9573, 89, 94sylanbrc 698 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S ) )
96 ecexg 7746 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G ~QG  Y )  e.  _V  ->  [ x ] ( G ~QG  Y )  e.  _V )
977, 96ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  [ x ] ( G ~QG  Y )  e.  _V
9897, 6fnmpti 6022 . . . . . . . . . . . . . . . . 17  |-  F  Fn  X
9928ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  S  C_  X )
100 fnfvima 6496 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  X  /\  S  C_  X  /\  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S )  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  ( F " S ) )
1011003expia 1267 . . . . . . . . . . . . . . . . 17  |-  ( ( F  Fn  X  /\  S  C_  X )  -> 
( ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  S  ->  ( F `  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  e.  ( F
" S ) ) )
10298, 99, 101sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  ( F " S ) ) )
10375adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  G  e.  Grp )
104 simpr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  a  e.  X )
10561adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X )
1064, 50grpcl 17430 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  Grp  /\  a  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)  ->  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  e.  X )
107103, 104, 105, 106syl3anc 1326 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  X )
108 eceq1 7782 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  ->  [ x ] ( G ~QG  Y )  =  [
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ] ( G ~QG  Y ) )
109108, 6, 97fvmpt3i 6287 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  X  ->  ( F `  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) )  =  [ ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
110107, 109syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  [ ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
11143ad2antrr 762 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( G ~QG  Y )  Er  X
)
1124, 50, 76, 49grplinv 17468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( ( invg `  G ) `
 a ) ( +g  `  G ) a )  =  ( 0g `  G ) )
113103, 104, 112syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  a
) ( +g  `  G
) a )  =  ( 0g `  G
) )
114113oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( ( invg `  G ) `
 a ) ( +g  `  G ) a ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( 0g
`  G ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
1154, 49grpinvcl 17467 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G  e.  Grp  /\  a  e.  X )  ->  ( ( invg `  G ) `  a
)  e.  X )
116103, 104, 115syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( invg `  G ) `  a
)  e.  X )
1174, 50grpass 17431 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 a )  e.  X  /\  a  e.  X  /\  ( ( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  X ) )  -> 
( ( ( ( invg `  G
) `  a )
( +g  `  G ) a ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  a )
( +g  `  G ) ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
118103, 116, 104, 105, 117syl13anc 1328 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( ( invg `  G ) `
 a ) ( +g  `  G ) a ) ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  =  ( ( ( invg `  G
) `  a )
( +g  `  G ) ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) ) ) )
1194, 50, 76grplid 17452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  X
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )
120103, 105, 119syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( 0g `  G
) ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  =  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )
121114, 118, 1203eqtr3d 2664 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )
122 simplr 792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )
123121, 122eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y )
12448ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  Y  C_  X )
1254, 49, 50, 41eqgval 17643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( a ( G ~QG  Y ) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) )  <->  ( a  e.  X  /\  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  X  /\  ( ( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y ) ) )
126103, 124, 125syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
a ( G ~QG  Y ) ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  <-> 
( a  e.  X  /\  ( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  X  /\  (
( ( invg `  G ) `  a
) ( +g  `  G
) ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  e.  Y ) ) )
127104, 107, 123, 126mpbir3and 1245 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  a
( G ~QG  Y ) ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
128111, 127erthi 7793 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  [ a ] ( G ~QG  Y )  =  [ ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) ] ( G ~QG  Y ) )
129110, 128eqtr4d 2659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  ( F `  ( a
( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )  =  [ a ] ( G ~QG  Y ) )
130129eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( F `  (
a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )  e.  ( F " S )  <->  [ a ] ( G ~QG  Y )  e.  ( F " S ) ) )
131102, 130sylibd 229 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  /\  y  e.  X )  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  /\  a  e.  X )  ->  (
( a ( +g  `  G ) ( ( ( invg `  G ) `  y
) ( +g  `  G
) z ) )  e.  S  ->  [ a ] ( G ~QG  Y )  e.  ( F " S ) ) )
132131ss2rabdv 3683 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  { a  e.  X  |  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) )  e.  S }  C_  { a  e.  X  |  [
a ] ( G ~QG  Y )  e.  ( F
" S ) } )
133 eceq1 7782 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  [ x ] ( G ~QG  Y )  =  [ a ] ( G ~QG  Y ) )
134133cbvmptv 4750 . . . . . . . . . . . . . . . 16  |-  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )  =  ( a  e.  X  |->  [ a ] ( G ~QG  Y ) )
1356, 134eqtri 2644 . . . . . . . . . . . . . . 15  |-  F  =  ( a  e.  X  |->  [ a ] ( G ~QG  Y ) )
136135mptpreima 5628 . . . . . . . . . . . . . 14  |-  ( `' F " ( F
" S ) )  =  { a  e.  X  |  [ a ] ( G ~QG  Y )  e.  ( F " S ) }
137132, 93, 1363sstr4g 3646 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) )
138 eleq2 2690 . . . . . . . . . . . . . . 15  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( y  e.  u  <->  y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S ) ) )
139 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( u  C_  ( `' F " ( F
" S ) )  <-> 
( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) )
140138, 139anbi12d 747 . . . . . . . . . . . . . 14  |-  ( u  =  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  -> 
( ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) )  <->  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  /\  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) ) )
141140rspcev 3309 . . . . . . . . . . . . 13  |-  ( ( ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  e.  J  /\  ( y  e.  ( `' ( a  e.  X  |->  ( a ( +g  `  G
) ( ( ( invg `  G
) `  y )
( +g  `  G ) z ) ) )
" S )  /\  ( `' ( a  e.  X  |->  ( a ( +g  `  G ) ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z ) ) )
" S )  C_  ( `' F " ( F
" S ) ) ) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
14272, 95, 137, 141syl12anc 1324 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
( ( invg `  G ) `  y
) ( +g  `  G
) z )  e.  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
1431423ad2antr3 1228 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X
)  /\  z  e.  S )  /\  (
y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
144143ex 450 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( y  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 y ) ( +g  `  G ) z )  e.  Y
)  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
14553, 144sylbid 230 . . . . . . . . 9  |-  ( ( ( ( G  e. 
TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J )  /\  y  e.  X )  /\  z  e.  S )  ->  (
( F `  z
)  =  [ y ] ( G ~QG  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
146145rexlimdva 3031 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  ( E. z  e.  S  ( F `  z )  =  [ y ] ( G ~QG  Y )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
14721, 146syl5 34 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G
)  /\  S  e.  J )  /\  y  e.  X )  ->  ( [ y ] ( G ~QG  Y )  e.  ( F " S )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
148147expimpd 629 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( (
y  e.  X  /\  [ y ] ( G ~QG  Y )  e.  ( F
" S ) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
14918, 148syl5bi 232 . . . . 5  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( y  e.  ( `' F "
( F " S
) )  ->  E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
150149ralrimiv 2965 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  A. y  e.  ( `' F "
( F " S
) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) )
151 topontop 20718 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
152 eltop2 20779 . . . . 5  |-  ( J  e.  Top  ->  (
( `' F "
( F " S
) )  e.  J  <->  A. y  e.  ( `' F " ( F
" S ) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F " ( F
" S ) ) ) ) )
15324, 151, 1523syl 18 . . . 4  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( ( `' F " ( F
" S ) )  e.  J  <->  A. y  e.  ( `' F "
( F " S
) ) E. u  e.  J  ( y  e.  u  /\  u  C_  ( `' F "
( F " S
) ) ) ) )
154150, 153mpbird 247 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( `' F " ( F " S ) )  e.  J )
155 elqtop3 21506 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ( X /. ( G ~QG  Y ) ) )  ->  ( ( F
" S )  e.  ( J qTop  F )  <-> 
( ( F " S )  C_  ( X /. ( G ~QG  Y ) )  /\  ( `' F " ( F
" S ) )  e.  J ) ) )
15624, 10, 155syl2anc 693 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( ( F " S )  e.  ( J qTop  F )  <-> 
( ( F " S )  C_  ( X /. ( G ~QG  Y ) )  /\  ( `' F " ( F
" S ) )  e.  J ) ) )
15713, 154, 156mpbir2and 957 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  ( J qTop  F ) )
1583, 5, 6, 8, 9qusval 16202 . . 3  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  H  =  ( F  "s  G ) )
159 qustgpopn.k . . 3  |-  K  =  ( TopOpen `  H )
160158, 5, 10, 9, 22, 159imastopn 21523 . 2  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  K  =  ( J qTop  F )
)
161157, 160eleqtrrd 2704 1  |-  ( ( G  e.  TopGrp  /\  Y  e.  (NrmSGrp `  G )  /\  S  e.  J
)  ->  ( F " S )  e.  K
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    Er wer 7739   [cec 7740   /.cqs 7741   Basecbs 15857   +g cplusg 15941   TopOpenctopn 16082   0gc0g 16100   qTop cqtop 16163    /.s cqus 16165   Grpcgrp 17422   invgcminusg 17423  SubGrpcsubg 17588  NrmSGrpcnsg 17589   ~QG cqg 17590  oppgcoppg 17775   Topctop 20698  TopOnctopon 20715    Cn ccn 21028   Homeochmeo 21556   TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-qtop 16167  df-imas 16168  df-qus 16169  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-nsg 17592  df-eqg 17593  df-oppg 17776  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-tmd 21876  df-tgp 21877
This theorem is referenced by:  qustgplem  21924
  Copyright terms: Public domain W3C validator