MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem1 Structured version   Visualization version   Unicode version

Theorem tsmsxplem1 21956
Description: Lemma for tsmsxp 21958. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b  |-  B  =  ( Base `  G
)
tsmsxp.g  |-  ( ph  ->  G  e. CMnd )
tsmsxp.2  |-  ( ph  ->  G  e.  TopGrp )
tsmsxp.a  |-  ( ph  ->  A  e.  V )
tsmsxp.c  |-  ( ph  ->  C  e.  W )
tsmsxp.f  |-  ( ph  ->  F : ( A  X.  C ) --> B )
tsmsxp.h  |-  ( ph  ->  H : A --> B )
tsmsxp.1  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ( G tsums  ( k  e.  C  |->  ( j F k ) ) ) )
tsmsxp.j  |-  J  =  ( TopOpen `  G )
tsmsxp.z  |-  .0.  =  ( 0g `  G )
tsmsxp.p  |-  .+  =  ( +g  `  G )
tsmsxp.m  |-  .-  =  ( -g `  G )
tsmsxp.l  |-  ( ph  ->  L  e.  J )
tsmsxp.3  |-  ( ph  ->  .0.  e.  L )
tsmsxp.k  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
tsmsxp.ks  |-  ( ph  ->  dom  D  C_  K
)
tsmsxp.d  |-  ( ph  ->  D  e.  ( ~P ( A  X.  C
)  i^i  Fin )
)
Assertion
Ref Expression
tsmsxplem1  |-  ( ph  ->  E. n  e.  ( ~P C  i^i  Fin ) ( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
Distinct variable groups:    .0. , k    j, k, n, x, G    B, k    D, j, k, n, x    j, L, n, x    A, j, k, n    j, K, k, n, x    j, H, k, n, x    .- , j, n, x    C, j, k, n    j, F, k, n, x    ph, j,
k, n
Allowed substitution hints:    ph( x)    A( x)    B( x, j, n)    C( x)    .+ ( x, j, k, n)    J( x, j, k, n)    L( k)    .- ( k)    V( x, j, k, n)    W( x, j, k, n)    .0. ( x, j, n)

Proof of Theorem tsmsxplem1
Dummy variables  g 
y  z  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.k . . . 4  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
2 elfpw 8268 . . . . 5  |-  ( K  e.  ( ~P A  i^i  Fin )  <->  ( K  C_  A  /\  K  e. 
Fin ) )
32simprbi 480 . . . 4  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  e.  Fin )
41, 3syl 17 . . 3  |-  ( ph  ->  K  e.  Fin )
52simplbi 476 . . . . . . 7  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  C_  A )
61, 5syl 17 . . . . . 6  |-  ( ph  ->  K  C_  A )
76sselda 3603 . . . . 5  |-  ( (
ph  /\  j  e.  K )  ->  j  e.  A )
8 tsmsxp.b . . . . . 6  |-  B  =  ( Base `  G
)
9 tsmsxp.j . . . . . 6  |-  J  =  ( TopOpen `  G )
10 eqid 2622 . . . . . 6  |-  ( ~P C  i^i  Fin )  =  ( ~P C  i^i  Fin )
11 tsmsxp.g . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
1211adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  G  e. CMnd )
13 tsmsxp.2 . . . . . . . 8  |-  ( ph  ->  G  e.  TopGrp )
14 tgptps 21884 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  G  e.  TopSp )
1513, 14syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  TopSp )
1615adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  G  e.  TopSp )
17 tsmsxp.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
1817adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
19 tsmsxp.f . . . . . . . . 9  |-  ( ph  ->  F : ( A  X.  C ) --> B )
20 fovrn 6804 . . . . . . . . 9  |-  ( ( F : ( A  X.  C ) --> B  /\  j  e.  A  /\  k  e.  C
)  ->  ( j F k )  e.  B )
2119, 20syl3an1 1359 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A  /\  k  e.  C
)  ->  ( j F k )  e.  B )
22213expa 1265 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  C )  ->  (
j F k )  e.  B )
23 eqid 2622 . . . . . . 7  |-  ( k  e.  C  |->  ( j F k ) )  =  ( k  e.  C  |->  ( j F k ) )
2422, 23fmptd 6385 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  (
k  e.  C  |->  ( j F k ) ) : C --> B )
25 tsmsxp.1 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ( G tsums  ( k  e.  C  |->  ( j F k ) ) ) )
26 df-ima 5127 . . . . . . . 8  |-  ( ( g  e.  B  |->  ( ( H `  j
)  .-  g )
) " L )  =  ran  ( ( g  e.  B  |->  ( ( H `  j
)  .-  g )
)  |`  L )
279, 8tgptopon 21886 . . . . . . . . . . . . 13  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  B ) )
2813, 27syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  B ) )
29 tsmsxp.l . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  J )
30 toponss 20731 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  B )  /\  L  e.  J )  ->  L  C_  B )
3128, 29, 30syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  L  C_  B )
3231adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  L  C_  B )
3332resmptd 5452 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
( g  e.  B  |->  ( ( H `  j )  .-  g
) )  |`  L )  =  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )
3433rneqd 5353 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( ( g  e.  B  |->  ( ( H `
 j )  .-  g ) )  |`  L )  =  ran  ( g  e.  L  |->  ( ( H `  j )  .-  g
) ) )
3526, 34syl5eq 2668 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( g  e.  B  |->  ( ( H `  j )  .-  g
) ) " L
)  =  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )
36 tsmsxp.h . . . . . . . . . . . . 13  |-  ( ph  ->  H : A --> B )
3736ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  B )
38 tsmsxp.p . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  G )
39 eqid 2622 . . . . . . . . . . . . 13  |-  ( invg `  G )  =  ( invg `  G )
40 tsmsxp.m . . . . . . . . . . . . 13  |-  .-  =  ( -g `  G )
418, 38, 39, 40grpsubval 17465 . . . . . . . . . . . 12  |-  ( ( ( H `  j
)  e.  B  /\  g  e.  B )  ->  ( ( H `  j )  .-  g
)  =  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) )
4237, 41sylan 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  A )  /\  g  e.  B )  ->  (
( H `  j
)  .-  g )  =  ( ( H `
 j )  .+  ( ( invg `  G ) `  g
) ) )
4342mpteq2dva 4744 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
g  e.  B  |->  ( ( H `  j
)  .-  g )
)  =  ( g  e.  B  |->  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) ) )
44 tgpgrp 21882 . . . . . . . . . . . . . 14  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
4513, 44syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Grp )
4645adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  G  e.  Grp )
478, 39grpinvcl 17467 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  g  e.  B )  ->  ( ( invg `  G ) `  g
)  e.  B )
4846, 47sylan 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  A )  /\  g  e.  B )  ->  (
( invg `  G ) `  g
)  e.  B )
498, 39grpinvf 17466 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  ( invg `  G ) : B --> B )
5046, 49syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  ( invg `  G ) : B --> B )
5150feqmptd 6249 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  ( invg `  G )  =  ( g  e.  B  |->  ( ( invg `  G ) `
 g ) ) )
52 eqidd 2623 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  (
y  e.  B  |->  ( ( H `  j
)  .+  y )
)  =  ( y  e.  B  |->  ( ( H `  j ) 
.+  y ) ) )
53 oveq2 6658 . . . . . . . . . . 11  |-  ( y  =  ( ( invg `  G ) `
 g )  -> 
( ( H `  j )  .+  y
)  =  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) )
5448, 51, 52, 53fmptco 6396 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
( y  e.  B  |->  ( ( H `  j )  .+  y
) )  o.  ( invg `  G ) )  =  ( g  e.  B  |->  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) ) )
5543, 54eqtr4d 2659 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
g  e.  B  |->  ( ( H `  j
)  .-  g )
)  =  ( ( y  e.  B  |->  ( ( H `  j
)  .+  y )
)  o.  ( invg `  G ) ) )
5613adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  G  e.  TopGrp )
579, 39grpinvhmeo 21890 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  ( invg `  G )  e.  ( J Homeo J ) )
5856, 57syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  ( invg `  G )  e.  ( J Homeo J ) )
59 eqid 2622 . . . . . . . . . . . 12  |-  ( y  e.  B  |->  ( ( H `  j ) 
.+  y ) )  =  ( y  e.  B  |->  ( ( H `
 j )  .+  y ) )
6059, 8, 38, 9tgplacthmeo 21907 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  ( H `  j )  e.  B )  ->  (
y  e.  B  |->  ( ( H `  j
)  .+  y )
)  e.  ( J
Homeo J ) )
6156, 37, 60syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
y  e.  B  |->  ( ( H `  j
)  .+  y )
)  e.  ( J
Homeo J ) )
62 hmeoco 21575 . . . . . . . . . 10  |-  ( ( ( invg `  G )  e.  ( J Homeo J )  /\  ( y  e.  B  |->  ( ( H `  j )  .+  y
) )  e.  ( J Homeo J ) )  ->  ( ( y  e.  B  |->  ( ( H `  j ) 
.+  y ) )  o.  ( invg `  G ) )  e.  ( J Homeo J ) )
6358, 61, 62syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
( y  e.  B  |->  ( ( H `  j )  .+  y
) )  o.  ( invg `  G ) )  e.  ( J
Homeo J ) )
6455, 63eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  (
g  e.  B  |->  ( ( H `  j
)  .-  g )
)  e.  ( J
Homeo J ) )
6529adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  L  e.  J )
66 hmeoima 21568 . . . . . . . 8  |-  ( ( ( g  e.  B  |->  ( ( H `  j )  .-  g
) )  e.  ( J Homeo J )  /\  L  e.  J )  ->  ( ( g  e.  B  |->  ( ( H `
 j )  .-  g ) ) " L )  e.  J
)
6764, 65, 66syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( g  e.  B  |->  ( ( H `  j )  .-  g
) ) " L
)  e.  J )
6835, 67eqeltrrd 2702 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( g  e.  L  |->  ( ( H `  j )  .-  g
) )  e.  J
)
69 tsmsxp.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
708, 69, 40grpsubid1 17500 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( H `  j )  e.  B )  -> 
( ( H `  j )  .-  .0.  )  =  ( H `  j ) )
7146, 37, 70syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( H `  j
)  .-  .0.  )  =  ( H `  j ) )
72 tsmsxp.3 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  L )
7372adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  .0.  e.  L )
74 ovex 6678 . . . . . . . 8  |-  ( ( H `  j ) 
.-  .0.  )  e.  _V
75 eqid 2622 . . . . . . . . 9  |-  ( g  e.  L  |->  ( ( H `  j ) 
.-  g ) )  =  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )
76 oveq2 6658 . . . . . . . . 9  |-  ( g  =  .0.  ->  (
( H `  j
)  .-  g )  =  ( ( H `
 j )  .-  .0.  ) )
7775, 76elrnmpt1s 5373 . . . . . . . 8  |-  ( (  .0.  e.  L  /\  ( ( H `  j )  .-  .0.  )  e.  _V )  ->  ( ( H `  j )  .-  .0.  )  e.  ran  ( g  e.  L  |->  ( ( H `  j ) 
.-  g ) ) )
7873, 74, 77sylancl 694 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( H `  j
)  .-  .0.  )  e.  ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )
7971, 78eqeltrrd 2702 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )
808, 9, 10, 12, 16, 18, 24, 25, 68, 79tsmsi 21937 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
817, 80syldan 487 . . . 4  |-  ( (
ph  /\  j  e.  K )  ->  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
8281ralrimiva 2966 . . 3  |-  ( ph  ->  A. j  e.  K  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
83 sseq1 3626 . . . . . 6  |-  ( y  =  ( f `  j )  ->  (
y  C_  z  <->  ( f `  j )  C_  z
) )
8483imbi1d 331 . . . . 5  |-  ( y  =  ( f `  j )  ->  (
( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )
8584ralbidv 2986 . . . 4  |-  ( y  =  ( f `  j )  ->  ( A. z  e.  ( ~P C  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <->  A. z  e.  ( ~P C  i^i  Fin )
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )
8685ac6sfi 8204 . . 3  |-  ( ( K  e.  Fin  /\  A. j  e.  K  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )  ->  E. f
( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) ) )
874, 82, 86syl2anc 693 . 2  |-  ( ph  ->  E. f ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin )
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )
88 frn 6053 . . . . . . . . 9  |-  ( f : K --> ( ~P C  i^i  Fin )  ->  ran  f  C_  ( ~P C  i^i  Fin )
)
8988adantl 482 . . . . . . . 8  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  C_  ( ~P C  i^i  Fin ) )
90 inss1 3833 . . . . . . . 8  |-  ( ~P C  i^i  Fin )  C_ 
~P C
9189, 90syl6ss 3615 . . . . . . 7  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  C_  ~P C )
92 sspwuni 4611 . . . . . . 7  |-  ( ran  f  C_  ~P C  <->  U.
ran  f  C_  C
)
9391, 92sylib 208 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  U. ran  f  C_  C )
94 tsmsxp.d . . . . . . . . 9  |-  ( ph  ->  D  e.  ( ~P ( A  X.  C
)  i^i  Fin )
)
95 elfpw 8268 . . . . . . . . . 10  |-  ( D  e.  ( ~P ( A  X.  C )  i^i 
Fin )  <->  ( D  C_  ( A  X.  C
)  /\  D  e.  Fin ) )
9695simplbi 476 . . . . . . . . 9  |-  ( D  e.  ( ~P ( A  X.  C )  i^i 
Fin )  ->  D  C_  ( A  X.  C
) )
97 rnss 5354 . . . . . . . . 9  |-  ( D 
C_  ( A  X.  C )  ->  ran  D 
C_  ran  ( A  X.  C ) )
9894, 96, 973syl 18 . . . . . . . 8  |-  ( ph  ->  ran  D  C_  ran  ( A  X.  C
) )
99 rnxpss 5566 . . . . . . . 8  |-  ran  ( A  X.  C )  C_  C
10098, 99syl6ss 3615 . . . . . . 7  |-  ( ph  ->  ran  D  C_  C
)
101100adantr 481 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  D 
C_  C )
10293, 101unssd 3789 . . . . 5  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( U. ran  f  u.  ran  D )  C_  C )
1034adantr 481 . . . . . . . 8  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  K  e.  Fin )
104 ffn 6045 . . . . . . . . . 10  |-  ( f : K --> ( ~P C  i^i  Fin )  ->  f  Fn  K )
105104adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  f  Fn  K )
106 dffn4 6121 . . . . . . . . 9  |-  ( f  Fn  K  <->  f : K -onto-> ran  f )
107105, 106sylib 208 . . . . . . . 8  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  f : K -onto-> ran  f )
108 fofi 8252 . . . . . . . 8  |-  ( ( K  e.  Fin  /\  f : K -onto-> ran  f
)  ->  ran  f  e. 
Fin )
109103, 107, 108syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  e.  Fin )
110 inss2 3834 . . . . . . . 8  |-  ( ~P C  i^i  Fin )  C_ 
Fin
11189, 110syl6ss 3615 . . . . . . 7  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  C_  Fin )
112 unifi 8255 . . . . . . 7  |-  ( ( ran  f  e.  Fin  /\ 
ran  f  C_  Fin )  ->  U. ran  f  e. 
Fin )
113109, 111, 112syl2anc 693 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  U. ran  f  e.  Fin )
11495simprbi 480 . . . . . . . 8  |-  ( D  e.  ( ~P ( A  X.  C )  i^i 
Fin )  ->  D  e.  Fin )
115 rnfi 8249 . . . . . . . 8  |-  ( D  e.  Fin  ->  ran  D  e.  Fin )
11694, 114, 1153syl 18 . . . . . . 7  |-  ( ph  ->  ran  D  e.  Fin )
117116adantr 481 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  D  e.  Fin )
118 unfi 8227 . . . . . 6  |-  ( ( U. ran  f  e. 
Fin  /\  ran  D  e. 
Fin )  ->  ( U. ran  f  u.  ran  D )  e.  Fin )
119113, 117, 118syl2anc 693 . . . . 5  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( U. ran  f  u.  ran  D )  e.  Fin )
120 elfpw 8268 . . . . 5  |-  ( ( U. ran  f  u. 
ran  D )  e.  ( ~P C  i^i  Fin )  <->  ( ( U. ran  f  u.  ran  D )  C_  C  /\  ( U. ran  f  u. 
ran  D )  e. 
Fin ) )
121102, 119, 120sylanbrc 698 . . . 4  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin )
)
122121adantrr 753 . . 3  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  ( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin )
)
123 ssun2 3777 . . . 4  |-  ran  D  C_  ( U. ran  f  u.  ran  D )
124123a1i 11 . . 3  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  ran  D 
C_  ( U. ran  f  u.  ran  D ) )
125121adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin ) )
126 fvssunirn 6217 . . . . . . . . . . . . . 14  |-  ( f `
 j )  C_  U.
ran  f
127 ssun1 3776 . . . . . . . . . . . . . 14  |-  U. ran  f  C_  ( U. ran  f  u.  ran  D )
128126, 127sstri 3612 . . . . . . . . . . . . 13  |-  ( f `
 j )  C_  ( U. ran  f  u. 
ran  D )
129 id 22 . . . . . . . . . . . . 13  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  z  =  ( U. ran  f  u. 
ran  D ) )
130128, 129syl5sseqr 3654 . . . . . . . . . . . 12  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( f `  j )  C_  z
)
131 pm5.5 351 . . . . . . . . . . . 12  |-  ( ( f `  j ) 
C_  z  ->  (
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
132130, 131syl 17 . . . . . . . . . . 11  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( ( f `  j ) 
C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
133 reseq2 5391 . . . . . . . . . . . . 13  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( k  e.  C  |->  ( j F k ) )  |`  z )  =  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )
134133oveq2d 6666 . . . . . . . . . . . 12  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  =  ( G 
gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) ) )
135134eleq1d 2686 . . . . . . . . . . 11  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( G 
gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  <->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
136132, 135bitrd 268 . . . . . . . . . 10  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( ( f `  j ) 
C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
137136rspcv 3305 . . . . . . . . 9  |-  ( ( U. ran  f  u. 
ran  D )  e.  ( ~P C  i^i  Fin )  ->  ( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
138125, 137syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
13911ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  G  e. CMnd )
140 cmnmnd 18208 . . . . . . . . . . . . 13  |-  ( G  e. CMnd  ->  G  e.  Mnd )
141139, 140syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  G  e.  Mnd )
142 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
j  e.  K )
143119adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( U. ran  f  u.  ran  D )  e. 
Fin )
144102adantlr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( U. ran  f  u.  ran  D )  C_  C )
145144sselda 3603 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  ( U. ran  f  u. 
ran  D ) )  ->  k  e.  C
)
14619adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  K )  ->  F : ( A  X.  C ) --> B )
147146, 7jca 554 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  K )  ->  ( F : ( A  X.  C ) --> B  /\  j  e.  A )
)
148203expa 1265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : ( A  X.  C ) --> B  /\  j  e.  A )  /\  k  e.  C )  ->  (
j F k )  e.  B )
149147, 148sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  K )  /\  k  e.  C )  ->  (
j F k )  e.  B )
150149adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  C )  ->  (
j F k )  e.  B )
151145, 150syldan 487 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  ( U. ran  f  u. 
ran  D ) )  ->  ( j F k )  e.  B
)
152 eqid 2622 . . . . . . . . . . . . . 14  |-  ( k  e.  ( U. ran  f  u.  ran  D ) 
|->  ( j F k ) )  =  ( k  e.  ( U. ran  f  u.  ran  D )  |->  ( j F k ) )
153151, 152fmptd 6385 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) : ( U. ran  f  u.  ran  D ) --> B )
154 ovexd 6680 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  ( U. ran  f  u. 
ran  D ) )  ->  ( j F k )  e.  _V )
155 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  e. 
_V
15669, 155eqeltri 2697 . . . . . . . . . . . . . . 15  |-  .0.  e.  _V
157156a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  .0.  e.  _V )
158152, 143, 154, 157fsuppmptdm 8286 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) finSupp  .0.  )
1598, 69, 139, 143, 153, 158gsumcl 18316 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) )  e.  B
)
160 velsn 4193 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  { j }  <-> 
y  =  j )
161 ovres 6800 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  { j }  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  ( y ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) k )  =  ( y F k ) )
162160, 161sylanbr 490 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  j  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  (
y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k )  =  ( y F k ) )
163 oveq1 6657 . . . . . . . . . . . . . . . . 17  |-  ( y  =  j  ->  (
y F k )  =  ( j F k ) )
164163adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  j  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  (
y F k )  =  ( j F k ) )
165162, 164eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( y  =  j  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  (
y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k )  =  ( j F k ) )
166165mpteq2dva 4744 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  (
k  e.  ( U. ran  f  u.  ran  D )  |->  ( y ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) k ) )  =  ( k  e.  ( U. ran  f  u.  ran  D )  |->  ( j F k ) ) )
167166oveq2d 6666 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k ) ) )  =  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) ) )
1688, 167gsumsn 18354 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  j  e.  K  /\  ( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) )  e.  B
)  ->  ( G  gsumg  ( y  e.  { j }  |->  ( G  gsumg  ( k  e.  ( U. ran  f  u.  ran  D ) 
|->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) k ) ) ) ) )  =  ( G  gsumg  ( k  e.  ( U. ran  f  u.  ran  D ) 
|->  ( j F k ) ) ) )
169141, 142, 159, 168syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( y  e.  {
j }  |->  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k ) ) ) ) )  =  ( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) ) )
170 snfi 8038 . . . . . . . . . . . . 13  |-  { j }  e.  Fin
171170a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  { j }  e.  Fin )
17219ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  F : ( A  X.  C ) --> B )
1737adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
j  e.  A )
174173snssd 4340 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  { j }  C_  A )
175 xpss12 5225 . . . . . . . . . . . . . 14  |-  ( ( { j }  C_  A  /\  ( U. ran  f  u.  ran  D ) 
C_  C )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  C_  ( A  X.  C ) )
176174, 144, 175syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  C_  ( A  X.  C ) )
177172, 176fssresd 6071 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) : ( { j }  X.  ( U. ran  f  u.  ran  D ) ) --> B )
178 xpfi 8231 . . . . . . . . . . . . . 14  |-  ( ( { j }  e.  Fin  /\  ( U. ran  f  u.  ran  D )  e.  Fin )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  e.  Fin )
179170, 143, 178sylancr 695 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  e.  Fin )
180177, 179, 157fdmfifsupp 8285 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) finSupp  .0.  )
1818, 69, 139, 171, 143, 177, 180gsumxp 18375 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( G  gsumg  ( y  e.  {
j }  |->  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k ) ) ) ) ) )
182144resmptd 5452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) )  =  ( k  e.  ( U. ran  f  u.  ran  D )  |->  ( j F k ) ) )
183182oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  =  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) ) )
184169, 181, 1833eqtr4rd 2667 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  =  ( G 
gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )
185184eleq1d 2686 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  <->  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  e.  ran  ( g  e.  L  |->  ( ( H `  j ) 
.-  g ) ) ) )
186 ovex 6678 . . . . . . . . . . 11  |-  ( ( H `  j ) 
.-  g )  e. 
_V
18775, 186elrnmpti 5376 . . . . . . . . . 10  |-  ( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  e.  ran  ( g  e.  L  |->  ( ( H `  j )  .-  g
) )  <->  E. g  e.  L  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  =  ( ( H `
 j )  .-  g ) )
188 isabl 18197 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
18945, 11, 188sylanbrc 698 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e.  Abel )
190189ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  G  e.  Abel )
1917, 37syldan 487 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  K )  ->  ( H `  j )  e.  B )
192191ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  ( H `  j )  e.  B )
19331ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  L  C_  B )
194193sselda 3603 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  g  e.  B )
1958, 40, 190, 192, 194ablnncan 18226 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  (
( H `  j
)  .-  ( ( H `  j )  .-  g ) )  =  g )
196 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  g  e.  L )
197195, 196eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  (
( H `  j
)  .-  ( ( H `  j )  .-  g ) )  e.  L )
198 oveq2 6658 . . . . . . . . . . . . 13  |-  ( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( ( H `  j
)  .-  g )  ->  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  =  ( ( H `  j )  .-  (
( H `  j
)  .-  g )
) )
199198eleq1d 2686 . . . . . . . . . . . 12  |-  ( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( ( H `  j
)  .-  g )  ->  ( ( ( H `
 j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L  <->  ( ( H `
 j )  .-  ( ( H `  j )  .-  g
) )  e.  L
) )
200197, 199syl5ibrcom 237 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  (
( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( ( H `  j
)  .-  g )  ->  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
201200rexlimdva 3031 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( E. g  e.  L  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  =  ( ( H `  j )  .-  g
)  ->  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
202187, 201syl5bi 232 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  -> 
( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
203185, 202sylbid 230 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  -> 
( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
204138, 203syld 47 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )  ->  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  e.  L ) )
205204an32s 846 . . . . . 6  |-  ( ( ( ph  /\  f : K --> ( ~P C  i^i  Fin ) )  /\  j  e.  K )  ->  ( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )  ->  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  e.  L ) )
206205ralimdva 2962 . . . . 5  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin )
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  ->  A. j  e.  K  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
207206impr 649 . . . 4  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  A. j  e.  K  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L )
208 fveq2 6191 . . . . . . 7  |-  ( j  =  x  ->  ( H `  j )  =  ( H `  x ) )
209 sneq 4187 . . . . . . . . . 10  |-  ( j  =  x  ->  { j }  =  { x } )
210209xpeq1d 5138 . . . . . . . . 9  |-  ( j  =  x  ->  ( { j }  X.  ( U. ran  f  u. 
ran  D ) )  =  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) )
211210reseq2d 5396 . . . . . . . 8  |-  ( j  =  x  ->  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) )  =  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) )
212211oveq2d 6666 . . . . . . 7  |-  ( j  =  x  ->  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )
213208, 212oveq12d 6668 . . . . . 6  |-  ( j  =  x  ->  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  =  ( ( H `  x ) 
.-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) ) ) ) )
214213eleq1d 2686 . . . . 5  |-  ( j  =  x  ->  (
( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L  <->  ( ( H `
 x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
215214cbvralv 3171 . . . 4  |-  ( A. j  e.  K  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  e.  L  <->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L )
216207, 215sylib 208 . . 3  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L )
217 sseq2 3627 . . . . 5  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ran  D  C_  n  <->  ran  D  C_  ( U. ran  f  u.  ran  D ) ) )
218 xpeq2 5129 . . . . . . . . . 10  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( { x }  X.  n )  =  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) )
219218reseq2d 5396 . . . . . . . . 9  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( F  |`  ( { x }  X.  n ) )  =  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) )
220219oveq2d 6666 . . . . . . . 8  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) )  =  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )
221220oveq2d 6666 . . . . . . 7  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ( H `
 x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  =  ( ( H `  x ) 
.-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) ) ) ) )
222221eleq1d 2686 . . . . . 6  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ( ( H `  x ) 
.-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L  <->  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
223222ralbidv 2986 . . . . 5  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L  <->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
224217, 223anbi12d 747 . . . 4  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ( ran 
D  C_  n  /\  A. x  e.  K  ( ( H `  x
)  .-  ( G  gsumg  ( F  |`  ( {
x }  X.  n
) ) ) )  e.  L )  <->  ( ran  D 
C_  ( U. ran  f  u.  ran  D )  /\  A. x  e.  K  ( ( H `
 x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) ) )
225224rspcev 3309 . . 3  |-  ( ( ( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin )  /\  ( ran 
D  C_  ( U. ran  f  u.  ran  D )  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )  ->  E. n  e.  ( ~P C  i^i  Fin )
( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
226122, 124, 216, 225syl12anc 1324 . 2  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  E. n  e.  ( ~P C  i^i  Fin ) ( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
22787, 226exlimddv 1863 1  |-  ( ph  ->  E. n  e.  ( ~P C  i^i  Fin ) ( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   {csn 4177   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   +g cplusg 15941   TopOpenctopn 16082   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422   invgcminusg 17423   -gcsg 17424  CMndccmn 18193   Abelcabl 18194  TopOnctopon 20715   TopSpctps 20736   Homeochmeo 21556   TopGrpctgp 21875   tsums ctsu 21929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-topgen 16104  df-mre 16246  df-mrc 16247  df-acs 16249  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930
This theorem is referenced by:  tsmsxp  21958
  Copyright terms: Public domain W3C validator