| Step | Hyp | Ref
| Expression |
| 1 | | df-ima 5127 |
. . . . . 6
                                                      
          |
| 2 | | subgntr.h |
. . . . . . . . . . . 12
     |
| 3 | | eqid 2622 |
. . . . . . . . . . . 12
         |
| 4 | 2, 3 | tgptopon 21886 |
. . . . . . . . . . 11
 TopOn        |
| 5 | 4 | 3ad2ant1 1082 |
. . . . . . . . . 10
  SubGrp 
        
TopOn        |
| 6 | 5 | adantr 481 |
. . . . . . . . 9
   SubGrp          
 TopOn        |
| 7 | | topontop 20718 |
. . . . . . . . . . . 12
 TopOn        |
| 8 | 5, 7 | syl 17 |
. . . . . . . . . . 11
  SubGrp 
        
  |
| 9 | 8 | adantr 481 |
. . . . . . . . . 10
   SubGrp          
   |
| 10 | | simpl2 1065 |
. . . . . . . . . . . 12
   SubGrp          
 SubGrp    |
| 11 | 3 | subgss 17595 |
. . . . . . . . . . . 12
 SubGrp 
      |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
   SubGrp          
       |
| 13 | | toponuni 20719 |
. . . . . . . . . . . 12
 TopOn             |
| 14 | 6, 13 | syl 17 |
. . . . . . . . . . 11
   SubGrp          
        |
| 15 | 12, 14 | sseqtrd 3641 |
. . . . . . . . . 10
   SubGrp          
    |
| 16 | | eqid 2622 |
. . . . . . . . . . 11
   |
| 17 | 16 | ntropn 20853 |
. . . . . . . . . 10
              |
| 18 | 9, 15, 17 | syl2anc 693 |
. . . . . . . . 9
   SubGrp          
           |
| 19 | | toponss 20731 |
. . . . . . . . 9
  TopOn     
        
              |
| 20 | 6, 18, 19 | syl2anc 693 |
. . . . . . . 8
   SubGrp          
               |
| 21 | 20 | resmptd 5452 |
. . . . . . 7
   SubGrp          
                      
                                    |
| 22 | 21 | rneqd 5353 |
. . . . . 6
   SubGrp          
                                                           |
| 23 | 1, 22 | syl5eq 2668 |
. . . . 5
   SubGrp          
                                                             |
| 24 | | simpl1 1064 |
. . . . . . 7
   SubGrp          
   |
| 25 | | simpr 477 |
. . . . . . . . 9
   SubGrp          
   |
| 26 | 16 | ntrss2 20861 |
. . . . . . . . . . 11
           
  |
| 27 | 9, 15, 26 | syl2anc 693 |
. . . . . . . . . 10
   SubGrp          
           |
| 28 | | simpl3 1066 |
. . . . . . . . . 10
   SubGrp          
           |
| 29 | 27, 28 | sseldd 3604 |
. . . . . . . . 9
   SubGrp          
   |
| 30 | | eqid 2622 |
. . . . . . . . . 10
         |
| 31 | 30 | subgsubcl 17605 |
. . . . . . . . 9
  SubGrp 
           |
| 32 | 10, 25, 29, 31 | syl3anc 1326 |
. . . . . . . 8
   SubGrp          
           |
| 33 | 12, 32 | sseldd 3604 |
. . . . . . 7
   SubGrp          
               |
| 34 | | eqid 2622 |
. . . . . . . 8
                                           |
| 35 | | eqid 2622 |
. . . . . . . 8
       |
| 36 | 34, 3, 35, 2 | tgplacthmeo 21907 |
. . . . . . 7
                                          |
| 37 | 24, 33, 36 | syl2anc 693 |
. . . . . 6
   SubGrp          
                            |
| 38 | | hmeoima 21568 |
. . . . . 6
                                                                       |
| 39 | 37, 18, 38 | syl2anc 693 |
. . . . 5
   SubGrp          
                                    |
| 40 | 23, 39 | eqeltrrd 2702 |
. . . 4
   SubGrp          
                            |
| 41 | | tgpgrp 21882 |
. . . . . . 7
   |
| 42 | 24, 41 | syl 17 |
. . . . . 6
   SubGrp          
   |
| 43 | 11 | 3ad2ant2 1083 |
. . . . . . 7
  SubGrp 
        
      |
| 44 | 43 | sselda 3603 |
. . . . . 6
   SubGrp          
       |
| 45 | 20, 28 | sseldd 3604 |
. . . . . 6
   SubGrp          
       |
| 46 | 3, 35, 30 | grpnpcan 17507 |
. . . . . 6
 
                          |
| 47 | 42, 44, 45, 46 | syl3anc 1326 |
. . . . 5
   SubGrp          
                  |
| 48 | | ovex 6678 |
. . . . . 6
                |
| 49 | | eqid 2622 |
. . . . . . 7
                                                   |
| 50 | | oveq2 6658 |
. . . . . . 7
                                 |
| 51 | 49, 50 | elrnmpt1s 5373 |
. . . . . 6
                                                                    |
| 52 | 28, 48, 51 | sylancl 694 |
. . . . 5
   SubGrp          
                                           |
| 53 | 47, 52 | eqeltrrd 2702 |
. . . 4
   SubGrp          
                            |
| 54 | 10 | adantr 481 |
. . . . . . 7
    SubGrp          
         
SubGrp    |
| 55 | 32 | adantr 481 |
. . . . . . 7
    SubGrp          
         
          |
| 56 | 27 | sselda 3603 |
. . . . . . 7
    SubGrp          
         
  |
| 57 | 35 | subgcl 17604 |
. . . . . . 7
  SubGrp                            |
| 58 | 54, 55, 56, 57 | syl3anc 1326 |
. . . . . 6
    SubGrp          
         
                 |
| 59 | 58, 49 | fmptd 6385 |
. . . . 5
   SubGrp          
                                        |
| 60 | | frn 6053 |
. . . . 5
                                                              
  |
| 61 | 59, 60 | syl 17 |
. . . 4
   SubGrp          
                         
  |
| 62 | | eleq2 2690 |
. . . . . 6
                                                       |
| 63 | | sseq1 3626 |
. . . . . 6
                                                   
   |
| 64 | 62, 63 | anbi12d 747 |
. . . . 5
                            
                                                       |
| 65 | 64 | rspcev 3309 |
. . . 4
                           
                                                     
   |
| 66 | 40, 53, 61, 65 | syl12anc 1324 |
. . 3
   SubGrp          
 

   |
| 67 | 66 | ralrimiva 2966 |
. 2
  SubGrp 
        



   |
| 68 | | eltop2 20779 |
. . 3
 



    |
| 69 | 8, 68 | syl 17 |
. 2
  SubGrp 
        

 

    |
| 70 | 67, 69 | mpbird 247 |
1
  SubGrp 
        
  |