Step | Hyp | Ref
| Expression |
1 | | df-ima 5127 |
. . . . . 6
                                                      
          |
2 | | subgntr.h |
. . . . . . . . . . . 12
     |
3 | | eqid 2622 |
. . . . . . . . . . . 12
         |
4 | 2, 3 | tgptopon 21886 |
. . . . . . . . . . 11
 TopOn        |
5 | 4 | 3ad2ant1 1082 |
. . . . . . . . . 10
  SubGrp 
        
TopOn        |
6 | 5 | adantr 481 |
. . . . . . . . 9
   SubGrp          
 TopOn        |
7 | | topontop 20718 |
. . . . . . . . . . . 12
 TopOn        |
8 | 5, 7 | syl 17 |
. . . . . . . . . . 11
  SubGrp 
        
  |
9 | 8 | adantr 481 |
. . . . . . . . . 10
   SubGrp          
   |
10 | | simpl2 1065 |
. . . . . . . . . . . 12
   SubGrp          
 SubGrp    |
11 | 3 | subgss 17595 |
. . . . . . . . . . . 12
 SubGrp 
      |
12 | 10, 11 | syl 17 |
. . . . . . . . . . 11
   SubGrp          
       |
13 | | toponuni 20719 |
. . . . . . . . . . . 12
 TopOn             |
14 | 6, 13 | syl 17 |
. . . . . . . . . . 11
   SubGrp          
        |
15 | 12, 14 | sseqtrd 3641 |
. . . . . . . . . 10
   SubGrp          
    |
16 | | eqid 2622 |
. . . . . . . . . . 11
   |
17 | 16 | ntropn 20853 |
. . . . . . . . . 10
              |
18 | 9, 15, 17 | syl2anc 693 |
. . . . . . . . 9
   SubGrp          
           |
19 | | toponss 20731 |
. . . . . . . . 9
  TopOn     
        
              |
20 | 6, 18, 19 | syl2anc 693 |
. . . . . . . 8
   SubGrp          
               |
21 | 20 | resmptd 5452 |
. . . . . . 7
   SubGrp          
                      
                                    |
22 | 21 | rneqd 5353 |
. . . . . 6
   SubGrp          
                                                           |
23 | 1, 22 | syl5eq 2668 |
. . . . 5
   SubGrp          
                                                             |
24 | | simpl1 1064 |
. . . . . . 7
   SubGrp          
   |
25 | | simpr 477 |
. . . . . . . . 9
   SubGrp          
   |
26 | 16 | ntrss2 20861 |
. . . . . . . . . . 11
           
  |
27 | 9, 15, 26 | syl2anc 693 |
. . . . . . . . . 10
   SubGrp          
           |
28 | | simpl3 1066 |
. . . . . . . . . 10
   SubGrp          
           |
29 | 27, 28 | sseldd 3604 |
. . . . . . . . 9
   SubGrp          
   |
30 | | eqid 2622 |
. . . . . . . . . 10
         |
31 | 30 | subgsubcl 17605 |
. . . . . . . . 9
  SubGrp 
           |
32 | 10, 25, 29, 31 | syl3anc 1326 |
. . . . . . . 8
   SubGrp          
           |
33 | 12, 32 | sseldd 3604 |
. . . . . . 7
   SubGrp          
               |
34 | | eqid 2622 |
. . . . . . . 8
                                           |
35 | | eqid 2622 |
. . . . . . . 8
       |
36 | 34, 3, 35, 2 | tgplacthmeo 21907 |
. . . . . . 7
                                          |
37 | 24, 33, 36 | syl2anc 693 |
. . . . . 6
   SubGrp          
                            |
38 | | hmeoima 21568 |
. . . . . 6
                                                                       |
39 | 37, 18, 38 | syl2anc 693 |
. . . . 5
   SubGrp          
                                    |
40 | 23, 39 | eqeltrrd 2702 |
. . . 4
   SubGrp          
                            |
41 | | tgpgrp 21882 |
. . . . . . 7
   |
42 | 24, 41 | syl 17 |
. . . . . 6
   SubGrp          
   |
43 | 11 | 3ad2ant2 1083 |
. . . . . . 7
  SubGrp 
        
      |
44 | 43 | sselda 3603 |
. . . . . 6
   SubGrp          
       |
45 | 20, 28 | sseldd 3604 |
. . . . . 6
   SubGrp          
       |
46 | 3, 35, 30 | grpnpcan 17507 |
. . . . . 6
 
                          |
47 | 42, 44, 45, 46 | syl3anc 1326 |
. . . . 5
   SubGrp          
                  |
48 | | ovex 6678 |
. . . . . 6
                |
49 | | eqid 2622 |
. . . . . . 7
                                                   |
50 | | oveq2 6658 |
. . . . . . 7
                                 |
51 | 49, 50 | elrnmpt1s 5373 |
. . . . . 6
                                                                    |
52 | 28, 48, 51 | sylancl 694 |
. . . . 5
   SubGrp          
                                           |
53 | 47, 52 | eqeltrrd 2702 |
. . . 4
   SubGrp          
                            |
54 | 10 | adantr 481 |
. . . . . . 7
    SubGrp          
         
SubGrp    |
55 | 32 | adantr 481 |
. . . . . . 7
    SubGrp          
         
          |
56 | 27 | sselda 3603 |
. . . . . . 7
    SubGrp          
         
  |
57 | 35 | subgcl 17604 |
. . . . . . 7
  SubGrp                            |
58 | 54, 55, 56, 57 | syl3anc 1326 |
. . . . . 6
    SubGrp          
         
                 |
59 | 58, 49 | fmptd 6385 |
. . . . 5
   SubGrp          
                                        |
60 | | frn 6053 |
. . . . 5
                                                              
  |
61 | 59, 60 | syl 17 |
. . . 4
   SubGrp          
                         
  |
62 | | eleq2 2690 |
. . . . . 6
                                                       |
63 | | sseq1 3626 |
. . . . . 6
                                                   
   |
64 | 62, 63 | anbi12d 747 |
. . . . 5
                            
                                                       |
65 | 64 | rspcev 3309 |
. . . 4
                           
                                                     
   |
66 | 40, 53, 61, 65 | syl12anc 1324 |
. . 3
   SubGrp          
 

   |
67 | 66 | ralrimiva 2966 |
. 2
  SubGrp 
        



   |
68 | | eltop2 20779 |
. . 3
 



    |
69 | 8, 68 | syl 17 |
. 2
  SubGrp 
        

 

    |
70 | 67, 69 | mpbird 247 |
1
  SubGrp 
        
  |