Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoabs2N Structured version   Visualization version   Unicode version

Theorem trlcoabs2N 36010
Description: Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
trlcoabs.l  |-  .<_  =  ( le `  K )
trlcoabs.j  |-  .\/  =  ( join `  K )
trlcoabs.a  |-  A  =  ( Atoms `  K )
trlcoabs.h  |-  H  =  ( LHyp `  K
)
trlcoabs.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlcoabs.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlcoabs2N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( G `  P )
) )

Proof of Theorem trlcoabs2N
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 1088 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
3 simp2l 1087 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
4 trlcoabs.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
5 trlcoabs.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrncnv 35432 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
71, 3, 6syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' F  e.  T )
84, 5ltrnco 36007 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
91, 2, 7, 8syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  `' F )  e.  T
)
10 trlcoabs.l . . . . . 6  |-  .<_  =  ( le `  K )
11 trlcoabs.a . . . . . 6  |-  A  =  ( Atoms `  K )
1210, 11, 4, 5ltrnel 35425 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
13123adant2r 1321 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
14 trlcoabs.j . . . . 5  |-  .\/  =  ( join `  K )
15 eqid 2622 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
16 trlcoabs.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
1710, 14, 15, 11, 4, 5, 16trlval2 35450 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  ->  ( R `  ( G  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )
181, 9, 13, 17syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  ( G  o.  `' F ) )  =  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )
1918oveq2d 6666 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  (
( ( F `  P )  .\/  (
( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) ) )
20 simp1l 1085 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  HL )
21 simp3l 1089 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
2210, 11, 4, 5ltrnat 35426 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
231, 3, 21, 22syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  A
)
2410, 11, 4, 5ltrnat 35426 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T  /\  ( F `  P
)  e.  A )  ->  ( ( G  o.  `' F ) `
 ( F `  P ) )  e.  A )
251, 9, 23, 24syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
) `  ( F `  P ) )  e.  A )
26 eqid 2622 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
2726, 14, 11hlatjcl 34653 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  (
( G  o.  `' F ) `  ( F `  P )
)  e.  A )  ->  ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) )  e.  (
Base `  K )
)
2820, 23, 25, 27syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) )  e.  (
Base `  K )
)
29 simp1r 1086 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
3026, 4lhpbase 35284 . . . 4  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3129, 30syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
3210, 14, 11hlatlej1 34661 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  (
( G  o.  `' F ) `  ( F `  P )
)  e.  A )  ->  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( ( G  o.  `' F ) `
 ( F `  P ) ) ) )
3320, 23, 25, 32syl3anc 1326 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( ( G  o.  `' F ) `
 ( F `  P ) ) ) )
3426, 10, 14, 15, 11atmod3i1 35150 . . 3  |-  ( ( K  e.  HL  /\  ( ( F `  P )  e.  A  /\  ( ( F `  P )  .\/  (
( G  o.  `' F ) `  ( F `  P )
) )  e.  (
Base `  K )  /\  W  e.  ( Base `  K ) )  /\  ( F `  P )  .<_  ( ( F `  P ) 
.\/  ( ( G  o.  `' F ) `
 ( F `  P ) ) ) )  ->  ( ( F `  P )  .\/  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )  =  ( ( ( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) ) )
3520, 23, 28, 31, 33, 34syl131anc 1339 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( ( F `
 P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) ) ( meet `  K ) W ) )  =  ( ( ( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) ) )
3610, 11, 4, 5ltrncoval 35431 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G  o.  `' F )  e.  T  /\  F  e.  T )  /\  P  e.  A )  ->  (
( ( G  o.  `' F )  o.  F
) `  P )  =  ( ( G  o.  `' F ) `
 ( F `  P ) ) )
371, 9, 3, 21, 36syl121anc 1331 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G  o.  `' F )  o.  F
) `  P )  =  ( ( G  o.  `' F ) `
 ( F `  P ) ) )
38 coass 5654 . . . . . . . 8  |-  ( ( G  o.  `' F
)  o.  F )  =  ( G  o.  ( `' F  o.  F
) )
3926, 4, 5ltrn1o 35410 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
401, 3, 39syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
41 f1ococnv1 6165 . . . . . . . . . . 11  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  ( `' F  o.  F )  =  (  _I  |`  ( Base `  K ) ) )
4240, 41syl 17 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' F  o.  F )  =  (  _I  |`  ( Base `  K ) ) )
4342coeq2d 5284 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  ( G  o.  (  _I  |`  ( Base `  K
) ) ) )
4426, 4, 5ltrn1o 35410 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
451, 2, 44syl2anc 693 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
46 f1of 6137 . . . . . . . . . 10  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
47 fcoi1 6078 . . . . . . . . . 10  |-  ( G : ( Base `  K
) --> ( Base `  K
)  ->  ( G  o.  (  _I  |`  ( Base `  K ) ) )  =  G )
4845, 46, 473syl 18 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  (  _I  |`  ( Base `  K ) ) )  =  G )
4943, 48eqtrd 2656 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  G )
5038, 49syl5eq 2668 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
)  o.  F )  =  G )
5150fveq1d 6193 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G  o.  `' F )  o.  F
) `  P )  =  ( G `  P ) )
5237, 51eqtr3d 2658 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
) `  ( F `  P ) )  =  ( G `  P
) )
5352oveq2d 6666 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( ( G  o.  `' F ) `  ( F `  P )
) )  =  ( ( F `  P
)  .\/  ( G `  P ) ) )
54 eqid 2622 . . . . . 6  |-  ( 1.
`  K )  =  ( 1. `  K
)
5510, 14, 54, 11, 4lhpjat2 35307 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F `
 P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  -> 
( ( F `  P )  .\/  W
)  =  ( 1.
`  K ) )
561, 13, 55syl2anc 693 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  W )  =  ( 1. `  K ) )
5753, 56oveq12d 6668 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) )  =  ( ( ( F `  P )  .\/  ( G `  P )
) ( meet `  K
) ( 1. `  K ) ) )
58 hlol 34648 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
5920, 58syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  OL )
6010, 11, 4, 5ltrnat 35426 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
611, 2, 21, 60syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G `  P )  e.  A
)
6226, 14, 11hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  ( F `  P )  e.  A  /\  ( G `  P )  e.  A )  ->  (
( F `  P
)  .\/  ( G `  P ) )  e.  ( Base `  K
) )
6320, 23, 61, 62syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( G `  P
) )  e.  (
Base `  K )
)
6426, 15, 54olm11 34514 . . . 4  |-  ( ( K  e.  OL  /\  ( ( F `  P )  .\/  ( G `  P )
)  e.  ( Base `  K ) )  -> 
( ( ( F `
 P )  .\/  ( G `  P ) ) ( meet `  K
) ( 1. `  K ) )  =  ( ( F `  P )  .\/  ( G `  P )
) )
6559, 63, 64syl2anc 693 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( G `  P ) ) (
meet `  K )
( 1. `  K
) )  =  ( ( F `  P
)  .\/  ( G `  P ) ) )
6657, 65eqtrd 2656 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( F `  P
)  .\/  ( ( G  o.  `' F
) `  ( F `  P ) ) ) ( meet `  K
) ( ( F `
 P )  .\/  W ) )  =  ( ( F `  P
)  .\/  ( G `  P ) ) )
6719, 35, 663eqtrd 2660 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( G `  P )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   1.cp1 17038   OLcol 34461   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemkfid1N  36209
  Copyright terms: Public domain W3C validator