MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthwe Structured version   Visualization version   Unicode version

Theorem canthwe 9473
Description: The set of well-orders of a set  A strictly dominates  A. A stronger form of canth2 8113. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.)
Hypothesis
Ref Expression
canthwe.1  |-  O  =  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) }
Assertion
Ref Expression
canthwe  |-  ( A  e.  V  ->  A  ~<  O )
Distinct variable groups:    x, r, O    V, r, x    A, r, x

Proof of Theorem canthwe
Dummy variables  u  y  f  v  w  a  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . . . 8  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  C_  A )
2 selpw 4165 . . . . . . . 8  |-  ( x  e.  ~P A  <->  x  C_  A
)
31, 2sylibr 224 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  ~P A )
4 simp2 1062 . . . . . . . . 9  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  r  C_  ( x  X.  x
) )
5 xpss12 5225 . . . . . . . . . 10  |-  ( ( x  C_  A  /\  x  C_  A )  -> 
( x  X.  x
)  C_  ( A  X.  A ) )
61, 1, 5syl2anc 693 . . . . . . . . 9  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  (
x  X.  x ) 
C_  ( A  X.  A ) )
74, 6sstrd 3613 . . . . . . . 8  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  r  C_  ( A  X.  A
) )
8 selpw 4165 . . . . . . . 8  |-  ( r  e.  ~P ( A  X.  A )  <->  r  C_  ( A  X.  A
) )
97, 8sylibr 224 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  r  e.  ~P ( A  X.  A ) )
103, 9jca 554 . . . . . 6  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  (
x  e.  ~P A  /\  r  e.  ~P ( A  X.  A
) ) )
1110ssopab2i 5003 . . . . 5  |-  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) }  C_  {
<. x ,  r >.  |  ( x  e. 
~P A  /\  r  e.  ~P ( A  X.  A ) ) }
12 canthwe.1 . . . . 5  |-  O  =  { <. x ,  r
>.  |  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) }
13 df-xp 5120 . . . . 5  |-  ( ~P A  X.  ~P ( A  X.  A ) )  =  { <. x ,  r >.  |  ( x  e.  ~P A  /\  r  e.  ~P ( A  X.  A
) ) }
1411, 12, 133sstr4i 3644 . . . 4  |-  O  C_  ( ~P A  X.  ~P ( A  X.  A
) )
15 pwexg 4850 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  _V )
16 sqxpexg 6963 . . . . . 6  |-  ( A  e.  V  ->  ( A  X.  A )  e. 
_V )
17 pwexg 4850 . . . . . 6  |-  ( ( A  X.  A )  e.  _V  ->  ~P ( A  X.  A
)  e.  _V )
1816, 17syl 17 . . . . 5  |-  ( A  e.  V  ->  ~P ( A  X.  A
)  e.  _V )
19 xpexg 6960 . . . . 5  |-  ( ( ~P A  e.  _V  /\ 
~P ( A  X.  A )  e.  _V )  ->  ( ~P A  X.  ~P ( A  X.  A ) )  e. 
_V )
2015, 18, 19syl2anc 693 . . . 4  |-  ( A  e.  V  ->  ( ~P A  X.  ~P ( A  X.  A ) )  e.  _V )
21 ssexg 4804 . . . 4  |-  ( ( O  C_  ( ~P A  X.  ~P ( A  X.  A ) )  /\  ( ~P A  X.  ~P ( A  X.  A ) )  e. 
_V )  ->  O  e.  _V )
2214, 20, 21sylancr 695 . . 3  |-  ( A  e.  V  ->  O  e.  _V )
23 simpr 477 . . . . . . . 8  |-  ( ( A  e.  V  /\  u  e.  A )  ->  u  e.  A )
2423snssd 4340 . . . . . . 7  |-  ( ( A  e.  V  /\  u  e.  A )  ->  { u }  C_  A )
25 0ss 3972 . . . . . . . 8  |-  (/)  C_  ( { u }  X.  { u } )
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
(/)  C_  ( { u }  X.  { u }
) )
27 rel0 5243 . . . . . . . 8  |-  Rel  (/)
28 br0 4701 . . . . . . . . 9  |-  -.  u (/) u
29 wesn 5190 . . . . . . . . 9  |-  ( Rel  (/)  ->  ( (/)  We  {
u }  <->  -.  u (/) u ) )
3028, 29mpbiri 248 . . . . . . . 8  |-  ( Rel  (/)  ->  (/)  We  { u } )
3127, 30mp1i 13 . . . . . . 7  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
(/)  We  { u } )
32 snex 4908 . . . . . . . 8  |-  { u }  e.  _V
33 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
34 simpl 473 . . . . . . . . . 10  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  x  =  {
u } )
3534sseq1d 3632 . . . . . . . . 9  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( x  C_  A 
<->  { u }  C_  A ) )
36 simpr 477 . . . . . . . . . 10  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  r  =  (/) )
3734sqxpeqd 5141 . . . . . . . . . 10  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( x  X.  x )  =  ( { u }  X.  { u } ) )
3836, 37sseq12d 3634 . . . . . . . . 9  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( r  C_  ( x  X.  x
)  <->  (/)  C_  ( {
u }  X.  {
u } ) ) )
39 weeq2 5103 . . . . . . . . . 10  |-  ( x  =  { u }  ->  ( r  We  x  <->  r  We  { u }
) )
40 weeq1 5102 . . . . . . . . . 10  |-  ( r  =  (/)  ->  ( r  We  { u }  <->  (/)  We 
{ u } ) )
4139, 40sylan9bb 736 . . . . . . . . 9  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( r  We  x  <->  (/)  We  { u } ) )
4235, 38, 413anbi123d 1399 . . . . . . . 8  |-  ( ( x  =  { u }  /\  r  =  (/) )  ->  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x )  <->  ( {
u }  C_  A  /\  (/)  C_  ( {
u }  X.  {
u } )  /\  (/) 
We  { u }
) ) )
4332, 33, 42opelopaba 4991 . . . . . . 7  |-  ( <. { u } ,  (/)
>.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) }  <->  ( {
u }  C_  A  /\  (/)  C_  ( {
u }  X.  {
u } )  /\  (/) 
We  { u }
) )
4424, 26, 31, 43syl3anbrc 1246 . . . . . 6  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
<. { u } ,  (/)
>.  e.  { <. x ,  r >.  |  ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x ) } )
4544, 12syl6eleqr 2712 . . . . 5  |-  ( ( A  e.  V  /\  u  e.  A )  -> 
<. { u } ,  (/)
>.  e.  O )
4645ex 450 . . . 4  |-  ( A  e.  V  ->  (
u  e.  A  ->  <. { u } ,  (/)
>.  e.  O ) )
47 eqid 2622 . . . . . . 7  |-  (/)  =  (/)
48 snex 4908 . . . . . . . 8  |-  { v }  e.  _V
4948, 33opth2 4949 . . . . . . 7  |-  ( <. { u } ,  (/)
>.  =  <. { v } ,  (/) >.  <->  ( {
u }  =  {
v }  /\  (/)  =  (/) ) )
5047, 49mpbiran2 954 . . . . . 6  |-  ( <. { u } ,  (/)
>.  =  <. { v } ,  (/) >.  <->  { u }  =  { v } )
51 vex 3203 . . . . . . 7  |-  u  e. 
_V
52 sneqbg 4374 . . . . . . 7  |-  ( u  e.  _V  ->  ( { u }  =  { v }  <->  u  =  v ) )
5351, 52ax-mp 5 . . . . . 6  |-  ( { u }  =  {
v }  <->  u  =  v )
5450, 53bitri 264 . . . . 5  |-  ( <. { u } ,  (/)
>.  =  <. { v } ,  (/) >.  <->  u  =  v )
55542a1i 12 . . . 4  |-  ( A  e.  V  ->  (
( u  e.  A  /\  v  e.  A
)  ->  ( <. { u } ,  (/) >.  =  <. { v } ,  (/) >.  <->  u  =  v
) ) )
5646, 55dom2d 7996 . . 3  |-  ( A  e.  V  ->  ( O  e.  _V  ->  A  ~<_  O ) )
5722, 56mpd 15 . 2  |-  ( A  e.  V  ->  A  ~<_  O )
58 eqid 2622 . . . . . . 7  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) }  =  { <. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) }
5958fpwwe2cbv 9452 . . . . . 6  |-  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) }  =  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  [. ( `' r " {
y } )  /  w ]. ( w f ( r  i^i  (
w  X.  w ) ) )  =  y ) ) }
60 eqid 2622 . . . . . 6  |-  U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) }  =  U. dom  { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) }
61 eqid 2622 . . . . . 6  |-  ( `' ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) " { ( U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) } f ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) ) } )  =  ( `' ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) " { ( U. dom  {
<. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  [. ( `' s " {
z } )  / 
v ]. ( v f ( s  i^i  (
v  X.  v ) ) )  =  z ) ) } f ( { <. a ,  s >.  |  ( ( a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  [. ( `' s " { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } `  U. dom  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a 
[. ( `' s
" { z } )  /  v ]. ( v f ( s  i^i  ( v  X.  v ) ) )  =  z ) ) } ) ) } )
6212, 59, 60, 61canthwelem 9472 . . . . 5  |-  ( A  e.  V  ->  -.  f : O -1-1-> A )
63 f1of1 6136 . . . . 5  |-  ( f : O -1-1-onto-> A  ->  f : O -1-1-> A )
6462, 63nsyl 135 . . . 4  |-  ( A  e.  V  ->  -.  f : O -1-1-onto-> A )
6564nexdv 1864 . . 3  |-  ( A  e.  V  ->  -.  E. f  f : O -1-1-onto-> A
)
66 ensym 8005 . . . 4  |-  ( A 
~~  O  ->  O  ~~  A )
67 bren 7964 . . . 4  |-  ( O 
~~  A  <->  E. f 
f : O -1-1-onto-> A )
6866, 67sylib 208 . . 3  |-  ( A 
~~  O  ->  E. f 
f : O -1-1-onto-> A )
6965, 68nsyl 135 . 2  |-  ( A  e.  V  ->  -.  A  ~~  O )
70 brsdom 7978 . 2  |-  ( A 
~<  O  <->  ( A  ~<_  O  /\  -.  A  ~~  O ) )
7157, 69, 70sylanbrc 698 1  |-  ( A  e.  V  ->  A  ~<  O )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200   [.wsbc 3435    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   class class class wbr 4653   {copab 4712    We wwe 5072    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117   Rel wrel 5119   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator