| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > canthwe | Structured version Visualization version Unicode version | ||
| Description: The set of well-orders of
a set |
| Ref | Expression |
|---|---|
| canthwe.1 |
|
| Ref | Expression |
|---|---|
| canthwe |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . . . . . . 8
| |
| 2 | selpw 4165 |
. . . . . . . 8
| |
| 3 | 1, 2 | sylibr 224 |
. . . . . . 7
|
| 4 | simp2 1062 |
. . . . . . . . 9
| |
| 5 | xpss12 5225 |
. . . . . . . . . 10
| |
| 6 | 1, 1, 5 | syl2anc 693 |
. . . . . . . . 9
|
| 7 | 4, 6 | sstrd 3613 |
. . . . . . . 8
|
| 8 | selpw 4165 |
. . . . . . . 8
| |
| 9 | 7, 8 | sylibr 224 |
. . . . . . 7
|
| 10 | 3, 9 | jca 554 |
. . . . . 6
|
| 11 | 10 | ssopab2i 5003 |
. . . . 5
|
| 12 | canthwe.1 |
. . . . 5
| |
| 13 | df-xp 5120 |
. . . . 5
| |
| 14 | 11, 12, 13 | 3sstr4i 3644 |
. . . 4
|
| 15 | pwexg 4850 |
. . . . 5
| |
| 16 | sqxpexg 6963 |
. . . . . 6
| |
| 17 | pwexg 4850 |
. . . . . 6
| |
| 18 | 16, 17 | syl 17 |
. . . . 5
|
| 19 | xpexg 6960 |
. . . . 5
| |
| 20 | 15, 18, 19 | syl2anc 693 |
. . . 4
|
| 21 | ssexg 4804 |
. . . 4
| |
| 22 | 14, 20, 21 | sylancr 695 |
. . 3
|
| 23 | simpr 477 |
. . . . . . . 8
| |
| 24 | 23 | snssd 4340 |
. . . . . . 7
|
| 25 | 0ss 3972 |
. . . . . . . 8
| |
| 26 | 25 | a1i 11 |
. . . . . . 7
|
| 27 | rel0 5243 |
. . . . . . . 8
| |
| 28 | br0 4701 |
. . . . . . . . 9
| |
| 29 | wesn 5190 |
. . . . . . . . 9
| |
| 30 | 28, 29 | mpbiri 248 |
. . . . . . . 8
|
| 31 | 27, 30 | mp1i 13 |
. . . . . . 7
|
| 32 | snex 4908 |
. . . . . . . 8
| |
| 33 | 0ex 4790 |
. . . . . . . 8
| |
| 34 | simpl 473 |
. . . . . . . . . 10
| |
| 35 | 34 | sseq1d 3632 |
. . . . . . . . 9
|
| 36 | simpr 477 |
. . . . . . . . . 10
| |
| 37 | 34 | sqxpeqd 5141 |
. . . . . . . . . 10
|
| 38 | 36, 37 | sseq12d 3634 |
. . . . . . . . 9
|
| 39 | weeq2 5103 |
. . . . . . . . . 10
| |
| 40 | weeq1 5102 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | sylan9bb 736 |
. . . . . . . . 9
|
| 42 | 35, 38, 41 | 3anbi123d 1399 |
. . . . . . . 8
|
| 43 | 32, 33, 42 | opelopaba 4991 |
. . . . . . 7
|
| 44 | 24, 26, 31, 43 | syl3anbrc 1246 |
. . . . . 6
|
| 45 | 44, 12 | syl6eleqr 2712 |
. . . . 5
|
| 46 | 45 | ex 450 |
. . . 4
|
| 47 | eqid 2622 |
. . . . . . 7
| |
| 48 | snex 4908 |
. . . . . . . 8
| |
| 49 | 48, 33 | opth2 4949 |
. . . . . . 7
|
| 50 | 47, 49 | mpbiran2 954 |
. . . . . 6
|
| 51 | vex 3203 |
. . . . . . 7
| |
| 52 | sneqbg 4374 |
. . . . . . 7
| |
| 53 | 51, 52 | ax-mp 5 |
. . . . . 6
|
| 54 | 50, 53 | bitri 264 |
. . . . 5
|
| 55 | 54 | 2a1i 12 |
. . . 4
|
| 56 | 46, 55 | dom2d 7996 |
. . 3
|
| 57 | 22, 56 | mpd 15 |
. 2
|
| 58 | eqid 2622 |
. . . . . . 7
| |
| 59 | 58 | fpwwe2cbv 9452 |
. . . . . 6
|
| 60 | eqid 2622 |
. . . . . 6
| |
| 61 | eqid 2622 |
. . . . . 6
| |
| 62 | 12, 59, 60, 61 | canthwelem 9472 |
. . . . 5
|
| 63 | f1of1 6136 |
. . . . 5
| |
| 64 | 62, 63 | nsyl 135 |
. . . 4
|
| 65 | 64 | nexdv 1864 |
. . 3
|
| 66 | ensym 8005 |
. . . 4
| |
| 67 | bren 7964 |
. . . 4
| |
| 68 | 66, 67 | sylib 208 |
. . 3
|
| 69 | 65, 68 | nsyl 135 |
. 2
|
| 70 | brsdom 7978 |
. 2
| |
| 71 | 57, 69, 70 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-wrecs 7407 df-recs 7468 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-oi 8415 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |