Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunle Structured version   Visualization version   Unicode version

Theorem omeiunle 40731
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunle.nph  |-  F/ n ph
omeiunle.ne  |-  F/_ n E
omeiunle.o  |-  ( ph  ->  O  e. OutMeas )
omeiunle.x  |-  X  = 
U. dom  O
omeiunle.z  |-  Z  =  ( ZZ>= `  N )
omeiunle.e  |-  ( ph  ->  E : Z --> ~P X
)
Assertion
Ref Expression
omeiunle  |-  ( ph  ->  ( O `  U_ n  e.  Z  ( E `  n ) )  <_ 
(Σ^ `  ( n  e.  Z  |->  ( O `  ( E `  n )
) ) ) )
Distinct variable groups:    n, O    n, X    n, Z
Allowed substitution hints:    ph( n)    E( n)    N( n)

Proof of Theorem omeiunle
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12256 . . 3  |-  ( 0 [,] +oo )  C_  RR*
2 omeiunle.o . . . 4  |-  ( ph  ->  O  e. OutMeas )
3 omeiunle.x . . . 4  |-  X  = 
U. dom  O
4 omeiunle.nph . . . . . 6  |-  F/ n ph
5 omeiunle.e . . . . . . . . 9  |-  ( ph  ->  E : Z --> ~P X
)
65ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  n  e.  Z )  ->  ( E `  n )  e.  ~P X )
7 elpwi 4168 . . . . . . . 8  |-  ( ( E `  n )  e.  ~P X  -> 
( E `  n
)  C_  X )
86, 7syl 17 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  ( E `  n )  C_  X )
98ex 450 . . . . . 6  |-  ( ph  ->  ( n  e.  Z  ->  ( E `  n
)  C_  X )
)
104, 9ralrimi 2957 . . . . 5  |-  ( ph  ->  A. n  e.  Z  ( E `  n ) 
C_  X )
11 iunss 4561 . . . . 5  |-  ( U_ n  e.  Z  ( E `  n )  C_  X  <->  A. n  e.  Z  ( E `  n ) 
C_  X )
1210, 11sylibr 224 . . . 4  |-  ( ph  ->  U_ n  e.  Z  ( E `  n ) 
C_  X )
132, 3, 12omecl 40717 . . 3  |-  ( ph  ->  ( O `  U_ n  e.  Z  ( E `  n ) )  e.  ( 0 [,] +oo ) )
141, 13sseldi 3601 . 2  |-  ( ph  ->  ( O `  U_ n  e.  Z  ( E `  n ) )  e. 
RR* )
155ffnd 6046 . . . . 5  |-  ( ph  ->  E  Fn  Z )
16 omeiunle.z . . . . . . 7  |-  Z  =  ( ZZ>= `  N )
17 fvex 6201 . . . . . . 7  |-  ( ZZ>= `  N )  e.  _V
1816, 17eqeltri 2697 . . . . . 6  |-  Z  e. 
_V
1918a1i 11 . . . . 5  |-  ( ph  ->  Z  e.  _V )
20 fnex 6481 . . . . 5  |-  ( ( E  Fn  Z  /\  Z  e.  _V )  ->  E  e.  _V )
2115, 19, 20syl2anc 693 . . . 4  |-  ( ph  ->  E  e.  _V )
22 rnexg 7098 . . . 4  |-  ( E  e.  _V  ->  ran  E  e.  _V )
2321, 22syl 17 . . 3  |-  ( ph  ->  ran  E  e.  _V )
242, 3omef 40710 . . . 4  |-  ( ph  ->  O : ~P X --> ( 0 [,] +oo ) )
25 frn 6053 . . . . 5  |-  ( E : Z --> ~P X  ->  ran  E  C_  ~P X )
265, 25syl 17 . . . 4  |-  ( ph  ->  ran  E  C_  ~P X )
2724, 26fssresd 6071 . . 3  |-  ( ph  ->  ( O  |`  ran  E
) : ran  E --> ( 0 [,] +oo ) )
2823, 27sge0xrcl 40602 . 2  |-  ( ph  ->  (Σ^ `  ( O  |`  ran  E
) )  e.  RR* )
292adantr 481 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  O  e. OutMeas )
3029, 3, 8omecl 40717 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( O `  ( E `  n ) )  e.  ( 0 [,] +oo ) )
31 eqid 2622 . . . 4  |-  ( n  e.  Z  |->  ( O `
 ( E `  n ) ) )  =  ( n  e.  Z  |->  ( O `  ( E `  n ) ) )
324, 30, 31fmptdf 6387 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( O `  ( E `  n )
) ) : Z --> ( 0 [,] +oo ) )
3319, 32sge0xrcl 40602 . 2  |-  ( ph  ->  (Σ^ `  ( n  e.  Z  |->  ( O `  ( E `  n )
) ) )  e. 
RR* )
34 fvex 6201 . . . . . . . 8  |-  ( E `
 n )  e. 
_V
3534rgenw 2924 . . . . . . 7  |-  A. n  e.  Z  ( E `  n )  e.  _V
36 dfiun3g 5378 . . . . . . 7  |-  ( A. n  e.  Z  ( E `  n )  e.  _V  ->  U_ n  e.  Z  ( E `  n )  =  U. ran  ( n  e.  Z  |->  ( E `  n
) ) )
3735, 36ax-mp 5 . . . . . 6  |-  U_ n  e.  Z  ( E `  n )  =  U. ran  ( n  e.  Z  |->  ( E `  n
) )
3837a1i 11 . . . . 5  |-  ( ph  ->  U_ n  e.  Z  ( E `  n )  =  U. ran  (
n  e.  Z  |->  ( E `  n ) ) )
395feqmptd 6249 . . . . . . . 8  |-  ( ph  ->  E  =  ( m  e.  Z  |->  ( E `
 m ) ) )
40 omeiunle.ne . . . . . . . . . . 11  |-  F/_ n E
41 nfcv 2764 . . . . . . . . . . 11  |-  F/_ n m
4240, 41nffv 6198 . . . . . . . . . 10  |-  F/_ n
( E `  m
)
43 nfcv 2764 . . . . . . . . . 10  |-  F/_ m
( E `  n
)
44 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  n  ->  ( E `  m )  =  ( E `  n ) )
4542, 43, 44cbvmpt 4749 . . . . . . . . 9  |-  ( m  e.  Z  |->  ( E `
 m ) )  =  ( n  e.  Z  |->  ( E `  n ) )
4645a1i 11 . . . . . . . 8  |-  ( ph  ->  ( m  e.  Z  |->  ( E `  m
) )  =  ( n  e.  Z  |->  ( E `  n ) ) )
4739, 46eqtrd 2656 . . . . . . 7  |-  ( ph  ->  E  =  ( n  e.  Z  |->  ( E `
 n ) ) )
4847rneqd 5353 . . . . . 6  |-  ( ph  ->  ran  E  =  ran  ( n  e.  Z  |->  ( E `  n
) ) )
4948unieqd 4446 . . . . 5  |-  ( ph  ->  U. ran  E  = 
U. ran  ( n  e.  Z  |->  ( E `
 n ) ) )
5038, 49eqtr4d 2659 . . . 4  |-  ( ph  ->  U_ n  e.  Z  ( E `  n )  =  U. ran  E
)
5150fveq2d 6195 . . 3  |-  ( ph  ->  ( O `  U_ n  e.  Z  ( E `  n ) )  =  ( O `  U. ran  E ) )
52 fnrndomg 9358 . . . . . 6  |-  ( Z  e.  _V  ->  ( E  Fn  Z  ->  ran 
E  ~<_  Z ) )
5319, 15, 52sylc 65 . . . . 5  |-  ( ph  ->  ran  E  ~<_  Z )
5416uzct 39232 . . . . . 6  |-  Z  ~<_  om
5554a1i 11 . . . . 5  |-  ( ph  ->  Z  ~<_  om )
56 domtr 8009 . . . . 5  |-  ( ( ran  E  ~<_  Z  /\  Z  ~<_  om )  ->  ran  E  ~<_  om )
5753, 55, 56syl2anc 693 . . . 4  |-  ( ph  ->  ran  E  ~<_  om )
582, 3, 26, 57omeunile 40719 . . 3  |-  ( ph  ->  ( O `  U. ran  E )  <_  (Σ^ `  ( O  |`  ran  E ) ) )
5951, 58eqbrtrd 4675 . 2  |-  ( ph  ->  ( O `  U_ n  e.  Z  ( E `  n ) )  <_ 
(Σ^ `  ( O  |`  ran  E
) ) )
60 ltweuz 12760 . . . . . 6  |-  <  We  ( ZZ>= `  N )
61 weeq2 5103 . . . . . . 7  |-  ( Z  =  ( ZZ>= `  N
)  ->  (  <  We  Z  <->  <  We  ( ZZ>= `  N ) ) )
6216, 61ax-mp 5 . . . . . 6  |-  (  < 
We  Z  <->  <  We  ( ZZ>=
`  N ) )
6360, 62mpbir 221 . . . . 5  |-  <  We  Z
6463a1i 11 . . . 4  |-  ( ph  ->  <  We  Z )
6519, 24, 5, 64sge0resrn 40621 . . 3  |-  ( ph  ->  (Σ^ `  ( O  |`  ran  E
) )  <_  (Σ^ `  ( O  o.  E )
) )
66 fcompt 6400 . . . . . 6  |-  ( ( O : ~P X --> ( 0 [,] +oo )  /\  E : Z --> ~P X )  ->  ( O  o.  E )  =  ( m  e.  Z  |->  ( O `  ( E `  m ) ) ) )
67 nfcv 2764 . . . . . . . . 9  |-  F/_ n O
6867, 42nffv 6198 . . . . . . . 8  |-  F/_ n
( O `  ( E `  m )
)
69 nfcv 2764 . . . . . . . 8  |-  F/_ m
( O `  ( E `  n )
)
7044fveq2d 6195 . . . . . . . 8  |-  ( m  =  n  ->  ( O `  ( E `  m ) )  =  ( O `  ( E `  n )
) )
7168, 69, 70cbvmpt 4749 . . . . . . 7  |-  ( m  e.  Z  |->  ( O `
 ( E `  m ) ) )  =  ( n  e.  Z  |->  ( O `  ( E `  n ) ) )
7271a1i 11 . . . . . 6  |-  ( ( O : ~P X --> ( 0 [,] +oo )  /\  E : Z --> ~P X )  ->  (
m  e.  Z  |->  ( O `  ( E `
 m ) ) )  =  ( n  e.  Z  |->  ( O `
 ( E `  n ) ) ) )
7366, 72eqtrd 2656 . . . . 5  |-  ( ( O : ~P X --> ( 0 [,] +oo )  /\  E : Z --> ~P X )  ->  ( O  o.  E )  =  ( n  e.  Z  |->  ( O `  ( E `  n ) ) ) )
7424, 5, 73syl2anc 693 . . . 4  |-  ( ph  ->  ( O  o.  E
)  =  ( n  e.  Z  |->  ( O `
 ( E `  n ) ) ) )
7574fveq2d 6195 . . 3  |-  ( ph  ->  (Σ^ `  ( O  o.  E
) )  =  (Σ^ `  (
n  e.  Z  |->  ( O `  ( E `
 n ) ) ) ) )
7665, 75breqtrd 4679 . 2  |-  ( ph  ->  (Σ^ `  ( O  |`  ran  E
) )  <_  (Σ^ `  (
n  e.  Z  |->  ( O `  ( E `
 n ) ) ) ) )
7714, 28, 33, 59, 76xrletrd 11993 1  |-  ( ph  ->  ( O `  U_ n  e.  Z  ( E `  n ) )  <_ 
(Σ^ `  ( n  e.  Z  |->  ( O `  ( E `  n )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    We wwe 5072   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065    ~<_ cdom 7953   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   ZZ>=cuz 11687   [,]cicc 12178  Σ^csumge0 40579  OutMeascome 40703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580  df-ome 40704
This theorem is referenced by:  omeiunltfirp  40733  omeiunlempt  40734  caratheodorylem2  40741
  Copyright terms: Public domain W3C validator