MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem13 Structured version   Visualization version   Unicode version

Theorem wfrlem13 7427
Description: Lemma for well-founded recursion. From here through wfrlem16 7430, we aim to prove that  dom  F  =  A. We do this by supposing that there is an element  z of  A that is not in  dom  F. We then define  C by extending  dom  F with the appropriate value at  z. We then show that  z cannot be an  R minimal element of  ( A  \  dom  F ), meaning that  ( A  \  dom  F ) must be empty, so  dom  F  =  A. Here, we show that  C is a function extending the domain of  F by one. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrlem13.1  |-  R  We  A
wfrlem13.2  |-  R Se  A
wfrlem13.3  |-  F  = wrecs ( R ,  A ,  G )
wfrlem13.4  |-  C  =  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
Assertion
Ref Expression
wfrlem13  |-  ( z  e.  ( A  \  dom  F )  ->  C  Fn  ( dom  F  u.  { z } ) )
Distinct variable groups:    z, A    z, F    z, R
Allowed substitution hints:    C( z)    G( z)

Proof of Theorem wfrlem13
StepHypRef Expression
1 wfrlem13.1 . . . . . 6  |-  R  We  A
2 wfrlem13.2 . . . . . 6  |-  R Se  A
3 wfrlem13.3 . . . . . 6  |-  F  = wrecs ( R ,  A ,  G )
41, 2, 3wfrfun 7425 . . . . 5  |-  Fun  F
5 vex 3203 . . . . . 6  |-  z  e. 
_V
6 fvex 6201 . . . . . 6  |-  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  e.  _V
75, 6funsn 5939 . . . . 5  |-  Fun  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. }
84, 7pm3.2i 471 . . . 4  |-  ( Fun 
F  /\  Fun  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )
96dmsnop 5609 . . . . . 6  |-  dom  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. }  =  {
z }
109ineq2i 3811 . . . . 5  |-  ( dom 
F  i^i  dom  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  =  ( dom  F  i^i  {
z } )
11 eldifn 3733 . . . . . 6  |-  ( z  e.  ( A  \  dom  F )  ->  -.  z  e.  dom  F )
12 disjsn 4246 . . . . . 6  |-  ( ( dom  F  i^i  {
z } )  =  (/) 
<->  -.  z  e.  dom  F )
1311, 12sylibr 224 . . . . 5  |-  ( z  e.  ( A  \  dom  F )  ->  ( dom  F  i^i  { z } )  =  (/) )
1410, 13syl5eq 2668 . . . 4  |-  ( z  e.  ( A  \  dom  F )  ->  ( dom  F  i^i  dom  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )  =  (/) )
15 funun 5932 . . . 4  |-  ( ( ( Fun  F  /\  Fun  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) ) >. } )  /\  ( dom  F  i^i  dom  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  =  (/) )  ->  Fun  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) ) >. } ) )
168, 14, 15sylancr 695 . . 3  |-  ( z  e.  ( A  \  dom  F )  ->  Fun  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } ) )
17 dmun 5331 . . . 4  |-  dom  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  =  ( dom  F  u.  dom  {
<. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
189uneq2i 3764 . . . 4  |-  ( dom 
F  u.  dom  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )  =  ( dom  F  u.  { z } )
1917, 18eqtri 2644 . . 3  |-  dom  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  =  ( dom  F  u.  {
z } )
2016, 19jctir 561 . 2  |-  ( z  e.  ( A  \  dom  F )  ->  ( Fun  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )  /\  dom  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )  =  ( dom  F  u.  { z } ) ) )
21 wfrlem13.4 . . . 4  |-  C  =  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
2221fneq1i 5985 . . 3  |-  ( C  Fn  ( dom  F  u.  { z } )  <-> 
( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )  Fn  ( dom  F  u.  { z } ) )
23 df-fn 5891 . . 3  |-  ( ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  Fn  ( dom  F  u.  { z } )  <->  ( Fun  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  /\  dom  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  =  ( dom  F  u.  {
z } ) ) )
2422, 23bitri 264 . 2  |-  ( C  Fn  ( dom  F  u.  { z } )  <-> 
( Fun  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) ) >. } )  /\  dom  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  =  ( dom  F  u.  {
z } ) ) )
2520, 24sylibr 224 1  |-  ( z  e.  ( A  \  dom  F )  ->  C  Fn  ( dom  F  u.  { z } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   <.cop 4183   Se wse 5071    We wwe 5072   dom cdm 5114    |` cres 5116   Predcpred 5679   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wfrlem14  7428  wfrlem15  7429
  Copyright terms: Public domain W3C validator