MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblpnf Structured version   Visualization version   Unicode version

Theorem xblpnf 22201
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xblpnf  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )

Proof of Theorem xblpnf
StepHypRef Expression
1 pnfxr 10092 . . 3  |- +oo  e.  RR*
2 elbl 22193 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\ +oo  e.  RR* )  ->  ( A  e.  ( P ( ball `  D
) +oo )  <->  ( A  e.  X  /\  ( P D A )  < +oo ) ) )
31, 2mp3an3 1413 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  < +oo ) ) )
4 xmetcl 22136 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( P D A )  e.  RR* )
5 xmetge0 22149 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  0  <_  ( P D A ) )
6 ge0nemnf 12004 . . . . . . . 8  |-  ( ( ( P D A )  e.  RR*  /\  0  <_  ( P D A ) )  ->  ( P D A )  =/= -oo )
74, 5, 6syl2anc 693 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( P D A )  =/= -oo )
8 ngtmnft 11997 . . . . . . . . 9  |-  ( ( P D A )  e.  RR*  ->  ( ( P D A )  = -oo  <->  -. -oo  <  ( P D A ) ) )
94, 8syl 17 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( ( P D A )  = -oo  <->  -. -oo  <  ( P D A ) ) )
109necon2abid 2836 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( -oo  <  ( P D A )  <->  ( P D A )  =/= -oo ) )
117, 10mpbird 247 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  -> -oo  <  ( P D A ) )
1211biantrurd 529 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( ( P D A )  < +oo 
<->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
13 xrrebnd 11999 . . . . . 6  |-  ( ( P D A )  e.  RR*  ->  ( ( P D A )  e.  RR  <->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
144, 13syl 17 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( ( P D A )  e.  RR  <->  ( -oo  <  ( P D A )  /\  ( P D A )  < +oo ) ) )
1512, 14bitr4d 271 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  A  e.  X
)  ->  ( ( P D A )  < +oo 
<->  ( P D A )  e.  RR ) )
16153expa 1265 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  A  e.  X )  ->  (
( P D A )  < +oo  <->  ( P D A )  e.  RR ) )
1716pm5.32da 673 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( ( A  e.  X  /\  ( P D A )  < +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
183, 17bitrd 268 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( A  e.  ( P ( ball `  D ) +oo )  <->  ( A  e.  X  /\  ( P D A )  e.  RR ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   *Metcxmt 19731   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  blpnf  22202  xmetec  22239  metdstri  22654
  Copyright terms: Public domain W3C validator