MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmullem Structured version   Visualization version   Unicode version

Theorem xmullem 12094
Description: Lemma for rexmul 12101. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmullem  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  ( A  =  0  \/  B  =  0
) )  /\  -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  ->  A  e.  RR )

Proof of Theorem xmullem
StepHypRef Expression
1 ioran 511 . . . 4  |-  ( -.  ( A  =  0  \/  B  =  0 )  <->  ( -.  A  =  0  /\  -.  B  =  0 ) )
21anbi2i 730 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  <->  ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\  -.  B  =  0 ) ) )
3 ioran 511 . . . . 5  |-  ( -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  <-> 
( -.  ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  /\  -.  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )
4 ioran 511 . . . . . 6  |-  ( -.  ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  <->  ( -.  ( 0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) ) )
5 ioran 511 . . . . . 6  |-  ( -.  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) )  <->  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )
64, 5anbi12i 733 . . . . 5  |-  ( ( -.  ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  /\  -.  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  <-> 
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) ) )
73, 6bitri 264 . . . 4  |-  ( -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  <-> 
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) ) )
8 ioran 511 . . . . 5  |-  ( -.  ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) )  <-> 
( -.  ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  /\  -.  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )
9 ioran 511 . . . . . 6  |-  ( -.  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  <->  ( -.  ( 0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) ) )
10 ioran 511 . . . . . 6  |-  ( -.  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  <->  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) )
119, 10anbi12i 733 . . . . 5  |-  ( ( -.  ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  /\  -.  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) )  <-> 
( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) )
128, 11bitri 264 . . . 4  |-  ( -.  ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) )  <-> 
( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) )
137, 12anbi12i 733 . . 3  |-  ( ( -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  (
( 0  <  A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  /\  -.  ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  <->  ( ( ( -.  ( 0  < 
B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )
14 simplll 798 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  A  e.  RR* )
15 elxr 11950 . . . . 5  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
1614, 15sylib 208 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
17 idd 24 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( A  e.  RR  ->  A  e.  RR ) )
18 simprlr 803 . . . . . . . . 9  |-  ( ( ( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) )  ->  -.  ( B  <  0  /\  A  = +oo ) )
1918adantl 482 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  -.  ( B  <  0  /\  A  = +oo ) )
2019pm2.21d 118 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( ( B  <  0  /\  A  = +oo )  ->  A  e.  RR ) )
2120expdimp 453 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( -.  A  =  0  /\  -.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  /\  B  <  0 )  ->  ( A  = +oo  ->  A  e.  RR ) )
22 simplrr 801 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  -.  B  =  0 )
2322pm2.21d 118 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( B  =  0  ->  ( A  = +oo  ->  A  e.  RR ) ) )
2423imp 445 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( -.  A  =  0  /\  -.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  /\  B  =  0 )  ->  ( A  = +oo  ->  A  e.  RR ) )
25 simplll 798 . . . . . . . . 9  |-  ( ( ( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) )  ->  -.  ( 0  <  B  /\  A  = +oo ) )
2625adantl 482 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  -.  (
0  <  B  /\  A  = +oo )
)
2726pm2.21d 118 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( (
0  <  B  /\  A  = +oo )  ->  A  e.  RR ) )
2827expdimp 453 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( -.  A  =  0  /\  -.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  /\  0  < 
B )  ->  ( A  = +oo  ->  A  e.  RR ) )
29 simpllr 799 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  B  e.  RR* )
30 0xr 10086 . . . . . . 7  |-  0  e.  RR*
31 xrltso 11974 . . . . . . . 8  |-  <  Or  RR*
32 solin 5058 . . . . . . . 8  |-  ( (  <  Or  RR*  /\  ( B  e.  RR*  /\  0  e.  RR* ) )  -> 
( B  <  0  \/  B  =  0  \/  0  <  B ) )
3331, 32mpan 706 . . . . . . 7  |-  ( ( B  e.  RR*  /\  0  e.  RR* )  ->  ( B  <  0  \/  B  =  0  \/  0  <  B ) )
3429, 30, 33sylancl 694 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( B  <  0  \/  B  =  0  \/  0  < 
B ) )
3521, 24, 28, 34mpjao3dan 1395 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( A  = +oo  ->  A  e.  RR ) )
36 simpllr 799 . . . . . . . . 9  |-  ( ( ( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) )  ->  -.  ( B  <  0  /\  A  = -oo ) )
3736adantl 482 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  -.  ( B  <  0  /\  A  = -oo ) )
3837pm2.21d 118 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( ( B  <  0  /\  A  = -oo )  ->  A  e.  RR ) )
3938expdimp 453 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( -.  A  =  0  /\  -.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  /\  B  <  0 )  ->  ( A  = -oo  ->  A  e.  RR ) )
4022pm2.21d 118 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( B  =  0  ->  ( A  = -oo  ->  A  e.  RR ) ) )
4140imp 445 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( -.  A  =  0  /\  -.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  /\  B  =  0 )  ->  ( A  = -oo  ->  A  e.  RR ) )
42 simprll 802 . . . . . . . . 9  |-  ( ( ( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) )  ->  -.  ( 0  <  B  /\  A  = -oo ) )
4342adantl 482 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  -.  (
0  <  B  /\  A  = -oo )
)
4443pm2.21d 118 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( (
0  <  B  /\  A  = -oo )  ->  A  e.  RR ) )
4544expdimp 453 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( -.  A  =  0  /\  -.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  /\  0  < 
B )  ->  ( A  = -oo  ->  A  e.  RR ) )
4639, 41, 45, 34mpjao3dan 1395 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( A  = -oo  ->  A  e.  RR ) )
4717, 35, 463jaod 1392 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  A  e.  RR ) )
4816, 47mpd 15 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( -.  A  =  0  /\ 
-.  B  =  0 ) )  /\  (
( ( -.  (
0  <  B  /\  A  = +oo )  /\  -.  ( B  <  0  /\  A  = -oo ) )  /\  ( -.  ( 0  <  A  /\  B  = +oo )  /\  -.  ( A  <  0  /\  B  = -oo ) ) )  /\  ( ( -.  (
0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) )  /\  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  A  e.  RR )
492, 13, 48syl2anb 496 . 2  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  -.  ( A  =  0  \/  B  =  0 ) )  /\  ( -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  /\  -.  ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) ) )  ->  A  e.  RR )
5049anassrs 680 1  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  -.  ( A  =  0  \/  B  =  0
) )  /\  -.  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )  /\  -.  (
( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )  ->  A  e.  RR )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   class class class wbr 4653    Or wor 5034   RRcr 9935   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  xmulcom  12096  xmulneg1  12099  xmulf  12102
  Copyright terms: Public domain W3C validator