| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmullem | Structured version Visualization version Unicode version | ||
| Description: Lemma for rexmul 12101. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmullem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 511 |
. . . 4
| |
| 2 | 1 | anbi2i 730 |
. . 3
|
| 3 | ioran 511 |
. . . . 5
| |
| 4 | ioran 511 |
. . . . . 6
| |
| 5 | ioran 511 |
. . . . . 6
| |
| 6 | 4, 5 | anbi12i 733 |
. . . . 5
|
| 7 | 3, 6 | bitri 264 |
. . . 4
|
| 8 | ioran 511 |
. . . . 5
| |
| 9 | ioran 511 |
. . . . . 6
| |
| 10 | ioran 511 |
. . . . . 6
| |
| 11 | 9, 10 | anbi12i 733 |
. . . . 5
|
| 12 | 8, 11 | bitri 264 |
. . . 4
|
| 13 | 7, 12 | anbi12i 733 |
. . 3
|
| 14 | simplll 798 |
. . . . 5
| |
| 15 | elxr 11950 |
. . . . 5
| |
| 16 | 14, 15 | sylib 208 |
. . . 4
|
| 17 | idd 24 |
. . . . 5
| |
| 18 | simprlr 803 |
. . . . . . . . 9
| |
| 19 | 18 | adantl 482 |
. . . . . . . 8
|
| 20 | 19 | pm2.21d 118 |
. . . . . . 7
|
| 21 | 20 | expdimp 453 |
. . . . . 6
|
| 22 | simplrr 801 |
. . . . . . . 8
| |
| 23 | 22 | pm2.21d 118 |
. . . . . . 7
|
| 24 | 23 | imp 445 |
. . . . . 6
|
| 25 | simplll 798 |
. . . . . . . . 9
| |
| 26 | 25 | adantl 482 |
. . . . . . . 8
|
| 27 | 26 | pm2.21d 118 |
. . . . . . 7
|
| 28 | 27 | expdimp 453 |
. . . . . 6
|
| 29 | simpllr 799 |
. . . . . . 7
| |
| 30 | 0xr 10086 |
. . . . . . 7
| |
| 31 | xrltso 11974 |
. . . . . . . 8
| |
| 32 | solin 5058 |
. . . . . . . 8
| |
| 33 | 31, 32 | mpan 706 |
. . . . . . 7
|
| 34 | 29, 30, 33 | sylancl 694 |
. . . . . 6
|
| 35 | 21, 24, 28, 34 | mpjao3dan 1395 |
. . . . 5
|
| 36 | simpllr 799 |
. . . . . . . . 9
| |
| 37 | 36 | adantl 482 |
. . . . . . . 8
|
| 38 | 37 | pm2.21d 118 |
. . . . . . 7
|
| 39 | 38 | expdimp 453 |
. . . . . 6
|
| 40 | 22 | pm2.21d 118 |
. . . . . . 7
|
| 41 | 40 | imp 445 |
. . . . . 6
|
| 42 | simprll 802 |
. . . . . . . . 9
| |
| 43 | 42 | adantl 482 |
. . . . . . . 8
|
| 44 | 43 | pm2.21d 118 |
. . . . . . 7
|
| 45 | 44 | expdimp 453 |
. . . . . 6
|
| 46 | 39, 41, 45, 34 | mpjao3dan 1395 |
. . . . 5
|
| 47 | 17, 35, 46 | 3jaod 1392 |
. . . 4
|
| 48 | 16, 47 | mpd 15 |
. . 3
|
| 49 | 2, 13, 48 | syl2anb 496 |
. 2
|
| 50 | 49 | anassrs 680 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 |
| This theorem is referenced by: xmulcom 12096 xmulneg1 12099 xmulf 12102 |
| Copyright terms: Public domain | W3C validator |