MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3c1 Structured version   Visualization version   GIF version

Theorem 2lgslem3c1 25127
Description: Lemma 3 for 2lgslem3 25129. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3c1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)

Proof of Theorem 2lgslem3c1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11299 . . . 4 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
2 8nn 11191 . . . . 5 8 ∈ ℕ
3 nnrp 11842 . . . . 5 (8 ∈ ℕ → 8 ∈ ℝ+)
42, 3ax-mp 5 . . . 4 8 ∈ ℝ+
5 modmuladdnn0 12714 . . . 4 ((𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+) → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5)))
61, 4, 5sylancl 694 . . 3 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → ∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5)))
7 simpr 477 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8 nn0cn 11302 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
9 8cn 11106 . . . . . . . . . . . . 13 8 ∈ ℂ
109a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → 8 ∈ ℂ)
118, 10mulcomd 10061 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 · 8) = (8 · 𝑘))
1211adantl 482 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑘 · 8) = (8 · 𝑘))
1312oveq1d 6665 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → ((𝑘 · 8) + 5) = ((8 · 𝑘) + 5))
1413eqeq2d 2632 . . . . . . . 8 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 5) ↔ 𝑃 = ((8 · 𝑘) + 5)))
1514biimpa 501 . . . . . . 7 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑃 = ((8 · 𝑘) + 5))
16 2lgslem2.n . . . . . . . 8 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
17162lgslem3c 25123 . . . . . . 7 ((𝑘 ∈ ℕ0𝑃 = ((8 · 𝑘) + 5)) → 𝑁 = ((2 · 𝑘) + 1))
187, 15, 17syl2an2r 876 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → 𝑁 = ((2 · 𝑘) + 1))
19 oveq1 6657 . . . . . . 7 (𝑁 = ((2 · 𝑘) + 1) → (𝑁 mod 2) = (((2 · 𝑘) + 1) mod 2))
20 nn0z 11400 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
21 eqidd 2623 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1))
22 2tp1odd 15076 . . . . . . . . 9 ((𝑘 ∈ ℤ ∧ ((2 · 𝑘) + 1) = ((2 · 𝑘) + 1)) → ¬ 2 ∥ ((2 · 𝑘) + 1))
2320, 21, 22syl2anc 693 . . . . . . . 8 (𝑘 ∈ ℕ0 → ¬ 2 ∥ ((2 · 𝑘) + 1))
24 2z 11409 . . . . . . . . . . . 12 2 ∈ ℤ
2524a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → 2 ∈ ℤ)
2625, 20zmulcld 11488 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (2 · 𝑘) ∈ ℤ)
2726peano2zd 11485 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 · 𝑘) + 1) ∈ ℤ)
28 mod2eq1n2dvds 15071 . . . . . . . . 9 (((2 · 𝑘) + 1) ∈ ℤ → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
2927, 28syl 17 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((((2 · 𝑘) + 1) mod 2) = 1 ↔ ¬ 2 ∥ ((2 · 𝑘) + 1)))
3023, 29mpbird 247 . . . . . . 7 (𝑘 ∈ ℕ0 → (((2 · 𝑘) + 1) mod 2) = 1)
3119, 30sylan9eqr 2678 . . . . . 6 ((𝑘 ∈ ℕ0𝑁 = ((2 · 𝑘) + 1)) → (𝑁 mod 2) = 1)
327, 18, 31syl2an2r 876 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) ∧ 𝑃 = ((𝑘 · 8) + 5)) → (𝑁 mod 2) = 1)
3332ex 450 . . . 4 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃 = ((𝑘 · 8) + 5) → (𝑁 mod 2) = 1))
3433rexlimdva 3031 . . 3 (𝑃 ∈ ℕ → (∃𝑘 ∈ ℕ0 𝑃 = ((𝑘 · 8) + 5) → (𝑁 mod 2) = 1))
356, 34syld 47 . 2 (𝑃 ∈ ℕ → ((𝑃 mod 8) = 5 → (𝑁 mod 2) = 1))
3635imp 445 1 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  4c4 11072  5c5 11073  8c8 11076  0cn0 11292  cz 11377  +crp 11832  cfl 12591   mod cmo 12668  cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fl 12593  df-mod 12669  df-dvds 14984
This theorem is referenced by:  2lgslem3  25129
  Copyright terms: Public domain W3C validator