MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladdnn0 Structured version   Visualization version   GIF version

Theorem modmuladdnn0 12714
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 481 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 nn0cn 11302 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
43adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
54ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
6 nn0re 11301 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7 modcl 12672 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
86, 7sylan 488 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
98recnd 10068 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ)
109adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
11 eleq1 2689 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1211adantl 482 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1310, 12mpbid 222 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
1413adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
15 zcn 11382 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
1615adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
17 rpcn 11841 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
1817adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℂ)
1918ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2016, 19mulcld 10060 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
215, 14, 20subadd2d 10411 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
22 eqcom 2629 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
2321, 22syl6rbbr 279 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
243ad2antrr 762 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
2524, 13subcld 10392 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
2625adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
27 rpcnne0 11850 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
2827adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
2928ad2antrr 762 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
30 divmul3 10690 . . . . . . . . 9 (((𝐴𝐵) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
3126, 16, 29, 30syl3anc 1326 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
32 oveq2 6658 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3332oveq1d 6665 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3433eqcoms 2630 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3534adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3635adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
37 moddiffl 12681 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
386, 37sylan 488 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
3938ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4036, 39eqtrd 2656 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4140eqeq1d 2624 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4223, 31, 413bitr2d 296 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
43 nn0ge0 11318 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
446, 43jca 554 . . . . . . . . . . 11 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
45 rpregt0 11846 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
46 divge0 10892 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
4744, 45, 46syl2an 494 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (𝐴 / 𝑀))
486adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
49 rpre 11839 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
5049adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
51 rpne0 11848 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ≠ 0)
5251adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ≠ 0)
5348, 50, 52redivcld 10853 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 / 𝑀) ∈ ℝ)
54 0z 11388 . . . . . . . . . . 11 0 ∈ ℤ
55 flge 12606 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5653, 54, 55sylancl 694 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5747, 56mpbid 222 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
58 breq2 4657 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
5957, 58syl5ibcom 235 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6059ad2antrr 762 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6142, 60sylbid 230 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6261imp 445 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
63 elnn0z 11390 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
642, 62, 63sylanbrc 698 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
65 oveq1 6657 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
6665oveq1d 6665 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
6766eqeq2d 2632 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
6867adantl 482 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
69 simpr 477 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7064, 68, 69rspcedvd 3317 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
71 nn0z 11400 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
72 modmuladdim 12713 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7371, 72sylan 488 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473imp 445 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7570, 74r19.29a 3078 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
7675ex 450 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  0cn0 11292  cz 11377  +crp 11832  cfl 12591   mod cmo 12668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fl 12593  df-mod 12669
This theorem is referenced by:  2lgslem3a1  25125  2lgslem3b1  25126  2lgslem3c1  25127  2lgslem3d1  25128
  Copyright terms: Public domain W3C validator