MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absmax Structured version   Visualization version   GIF version

Theorem absmax 14069
Description: The maximum of two numbers using absolute value. (Contributed by NM, 7-Aug-2008.)
Assertion
Ref Expression
absmax ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))

Proof of Theorem absmax
StepHypRef Expression
1 recn 10026 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 2cn 11091 . . . . . . 7 2 ∈ ℂ
3 2ne0 11113 . . . . . . 7 2 ≠ 0
4 divcan3 10711 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴)
52, 3, 4mp3an23 1416 . . . . . 6 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
61, 5syl 17 . . . . 5 (𝐴 ∈ ℝ → ((2 · 𝐴) / 2) = 𝐴)
76ad2antlr 763 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((2 · 𝐴) / 2) = 𝐴)
8 ltle 10126 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
98imp 445 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → 𝐵𝐴)
10 abssubge0 14067 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
11103expa 1265 . . . . . . . 8 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
129, 11syldan 487 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (abs‘(𝐴𝐵)) = (𝐴𝐵))
1312oveq2d 6666 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐴𝐵)))
14 recn 10026 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 simpr 477 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
16 simpl 473 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
1715, 16, 15ppncand 10432 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
18 2times 11145 . . . . . . . . . 10 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
1918adantl 482 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) = (𝐴 + 𝐴))
2017, 19eqtr4d 2659 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2114, 1, 20syl2an 494 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2221adantr 481 . . . . . 6 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
2313, 22eqtrd 2656 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐴))
2423oveq1d 6665 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐴) / 2))
25 ltnle 10117 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
2625biimpa 501 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → ¬ 𝐴𝐵)
2726iffalsed 4097 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
287, 24, 273eqtr4rd 2667 . . 3 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
2928ancom1s 847 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
30 divcan3 10711 . . . . . 6 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
312, 3, 30mp3an23 1416 . . . . 5 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
3214, 31syl 17 . . . 4 (𝐵 ∈ ℝ → ((2 · 𝐵) / 2) = 𝐵)
3332ad2antlr 763 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((2 · 𝐵) / 2) = 𝐵)
34 abssuble0 14068 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
35343expa 1265 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (abs‘(𝐴𝐵)) = (𝐵𝐴))
3635oveq2d 6666 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = ((𝐴 + 𝐵) + (𝐵𝐴)))
37 simpr 477 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
38 simpl 473 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
3937, 38, 37ppncand 10432 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 + 𝐴) + (𝐵𝐴)) = (𝐵 + 𝐵))
40 addcom 10222 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
4140oveq1d 6665 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = ((𝐵 + 𝐴) + (𝐵𝐴)))
42 2times 11145 . . . . . . . . 9 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
4342adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
4439, 41, 433eqtr4d 2666 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
451, 14, 44syl2an 494 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4645adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (𝐵𝐴)) = (2 · 𝐵))
4736, 46eqtrd 2656 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) = (2 · 𝐵))
4847oveq1d 6665 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = ((2 · 𝐵) / 2))
49 iftrue 4092 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5049adantl 482 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
5133, 48, 503eqtr4rd 2667 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
52 simpr 477 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
53 simpl 473 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
5429, 51, 52, 53ltlecasei 10145 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐵, 𝐴) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator