Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5alem2 Structured version   Visualization version   GIF version

Theorem baerlem5alem2 37000
Description: Lemma for baerlem5a 37003. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem3.p + = (+g𝑊)
baerlem3.t · = ( ·𝑠𝑊)
baerlem3.r 𝑅 = (Scalar‘𝑊)
baerlem3.b 𝐵 = (Base‘𝑅)
baerlem3.a = (+g𝑅)
baerlem3.l 𝐿 = (-g𝑅)
baerlem3.q 𝑄 = (0g𝑅)
baerlem3.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
baerlem5alem2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5alem2
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 baerlem3.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 baerlem3.p . . . . . . 7 + = (+g𝑊)
3 baerlem3.m . . . . . . 7 = (-g𝑊)
4 baerlem3.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
5 lveclmod 19106 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
7 lmodabl 18910 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ Abel)
9 baerlem3.x . . . . . . 7 (𝜑𝑋𝑉)
10 baerlem3.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3586 . . . . . . 7 (𝜑𝑌𝑉)
12 baerlem3.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1312eldifad 3586 . . . . . . 7 (𝜑𝑍𝑉)
141, 2, 3, 8, 9, 11, 13ablsubsub4 18224 . . . . . 6 (𝜑 → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 + 𝑍)))
1514sneqd 4189 . . . . 5 (𝜑 → {((𝑋 𝑌) 𝑍)} = {(𝑋 (𝑌 + 𝑍))})
1615fveq2d 6195 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
171, 3lmodvsubcl 18908 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
186, 9, 11, 17syl3anc 1326 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
19 baerlem3.s . . . . . 6 = (LSSum‘𝑊)
20 baerlem3.n . . . . . 6 𝑁 = (LSpan‘𝑊)
211, 3, 19, 20lspsntrim 19098 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉𝑍𝑉) → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
226, 18, 13, 21syl3anc 1326 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑌) 𝑍)}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
2316, 22eqsstr3d 3640 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
241, 3, 8, 9, 13, 11ablsub32 18227 . . . . . . 7 (𝜑 → ((𝑋 𝑍) 𝑌) = ((𝑋 𝑌) 𝑍))
2524, 14eqtrd 2656 . . . . . 6 (𝜑 → ((𝑋 𝑍) 𝑌) = (𝑋 (𝑌 + 𝑍)))
2625sneqd 4189 . . . . 5 (𝜑 → {((𝑋 𝑍) 𝑌)} = {(𝑋 (𝑌 + 𝑍))})
2726fveq2d 6195 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) = (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
281, 3lmodvsubcl 18908 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
296, 9, 13, 28syl3anc 1326 . . . . 5 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
301, 3, 19, 20lspsntrim 19098 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉𝑌𝑉) → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
316, 29, 11, 30syl3anc 1326 . . . 4 (𝜑 → (𝑁‘{((𝑋 𝑍) 𝑌)}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3227, 31eqsstr3d 3640 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})))
3323, 32ssind 3837 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ⊆ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
34 elin 3796 . . . . 5 (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
35 baerlem3.r . . . . . . 7 𝑅 = (Scalar‘𝑊)
36 baerlem3.b . . . . . . 7 𝐵 = (Base‘𝑅)
37 baerlem3.t . . . . . . 7 · = ( ·𝑠𝑊)
381, 2, 35, 36, 37, 19, 20, 6, 18, 13lsmspsn 19084 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ↔ ∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))))
391, 2, 35, 36, 37, 19, 20, 6, 29, 11lsmspsn 19084 . . . . . 6 (𝜑 → (𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌})) ↔ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))))
4038, 39anbi12d 747 . . . . 5 (𝜑 → ((𝑗 ∈ ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∧ 𝑗 ∈ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
4134, 40syl5bb 272 . . . 4 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ↔ (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))))
42 baerlem3.o . . . . . . . . . . 11 0 = (0g𝑊)
43 simp11 1091 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝜑)
4443, 4syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LVec)
4543, 9syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑋𝑉)
46 baerlem3.c . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
4743, 46syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
48 baerlem3.d . . . . . . . . . . . 12 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
4943, 48syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
5043, 10syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑌 ∈ (𝑉 ∖ { 0 }))
5143, 12syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑍 ∈ (𝑉 ∖ { 0 }))
52 baerlem3.a . . . . . . . . . . 11 = (+g𝑅)
53 baerlem3.l . . . . . . . . . . 11 𝐿 = (-g𝑅)
54 baerlem3.q . . . . . . . . . . 11 𝑄 = (0g𝑅)
55 baerlem3.i . . . . . . . . . . 11 𝐼 = (invg𝑅)
56 simp12l 1174 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑎𝐵)
57 simp12r 1175 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑏𝐵)
58 simp2l 1087 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑑𝐵)
59 simp2r 1088 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑒𝐵)
60 simp13 1093 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)))
61 simp3 1063 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)))
621, 3, 42, 19, 20, 44, 45, 47, 49, 50, 51, 2, 37, 35, 36, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61baerlem5alem1 36997 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 = (𝑎 · (𝑋 (𝑌 + 𝑍))))
6343, 6syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑊 ∈ LMod)
641, 2lmodvacl 18877 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
656, 11, 13, 64syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
661, 3lmodvsubcl 18908 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
676, 9, 65, 66syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
6843, 67syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
691, 37, 35, 36, 20, 63, 56, 68lspsneli 19001 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → (𝑎 · (𝑋 (𝑌 + 𝑍))) ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7062, 69eqeltrd 2701 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) ∧ (𝑑𝐵𝑒𝐵) ∧ 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
71703exp 1264 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → ((𝑑𝐵𝑒𝐵) → (𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7271rexlimdvv 3037 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍))) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
73723exp 1264 . . . . . 6 (𝜑 → ((𝑎𝐵𝑏𝐵) → (𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))))
7473rexlimdvv 3037 . . . . 5 (𝜑 → (∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) → (∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌)) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))))
7574impd 447 . . . 4 (𝜑 → ((∃𝑎𝐵𝑏𝐵 𝑗 = ((𝑎 · (𝑋 𝑌)) + (𝑏 · 𝑍)) ∧ ∃𝑑𝐵𝑒𝐵 𝑗 = ((𝑑 · (𝑋 𝑍)) + (𝑒 · 𝑌))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7641, 75sylbid 230 . . 3 (𝜑 → (𝑗 ∈ (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) → 𝑗 ∈ (𝑁‘{(𝑋 (𝑌 + 𝑍))})))
7776ssrdv 3609 . 2 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))) ⊆ (𝑁‘{(𝑋 (𝑌 + 𝑍))}))
7833, 77eqssd 3620 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cdif 3571  cin 3573  wss 3574  {csn 4177  {cpr 4179  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  invgcminusg 17423  -gcsg 17424  LSSumclsm 18049  Abelcabl 18194  LModclmod 18863  LSpanclspn 18971  LVecclvec 19102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-cntz 17750  df-lsm 18051  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103
This theorem is referenced by:  baerlem5a  37003
  Copyright terms: Public domain W3C validator