![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bcp1m1 | Structured version Visualization version GIF version |
Description: Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
Ref | Expression |
---|---|
bcp1m1 | ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 11333 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
2 | nn0z 11400 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | peano2zm 11420 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
5 | bccmpl 13096 | . . 3 ⊢ (((𝑁 + 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1)))) | |
6 | 1, 4, 5 | syl2anc 693 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1)))) |
7 | nn0cn 11302 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
8 | 1cnd 10056 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
9 | 7, 8, 8 | pnncand 10431 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = (1 + 1)) |
10 | df-2 11079 | . . . . 5 ⊢ 2 = (1 + 1) | |
11 | 9, 10 | syl6eqr 2674 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = 2) |
12 | 11 | oveq2d 6666 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = ((𝑁 + 1)C2)) |
13 | bcn2 13106 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2)) | |
14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2)) |
15 | ax-1cn 9994 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | pncan 10287 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
17 | 7, 15, 16 | sylancl 694 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
18 | 17 | oveq2d 6666 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) · ((𝑁 + 1) − 1)) = ((𝑁 + 1) · 𝑁)) |
19 | 18 | oveq1d 6665 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2) = (((𝑁 + 1) · 𝑁) / 2)) |
20 | 14, 19 | eqtrd 2656 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · 𝑁) / 2)) |
21 | 12, 20 | eqtrd 2656 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = (((𝑁 + 1) · 𝑁) / 2)) |
22 | 6, 21 | eqtrd 2656 | 1 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 1c1 9937 + caddc 9939 · cmul 9941 − cmin 10266 / cdiv 10684 2c2 11070 ℕ0cn0 11292 ℤcz 11377 Ccbc 13089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-seq 12802 df-fac 13061 df-bc 13090 |
This theorem is referenced by: arisum 14592 |
Copyright terms: Public domain | W3C validator |