Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnbllem Structured version   Visualization version   GIF version

Theorem qndenserrnbllem 40514
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnbllem.i (𝜑𝐼 ∈ Fin)
qndenserrnbllem.n (𝜑𝐼 ≠ ∅)
qndenserrnbllem.x (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
qndenserrnbllem.d 𝐷 = (dist‘(ℝ^‘𝐼))
qndenserrnbllem.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
qndenserrnbllem (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐼   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐷(𝑦)

Proof of Theorem qndenserrnbllem
Dummy variables 𝑘 𝑖 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnbllem.i . . . 4 (𝜑𝐼 ∈ Fin)
2 inss1 3833 . . . . . 6 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ⊆ ℚ
3 qex 11800 . . . . . 6 ℚ ∈ V
4 ssexg 4804 . . . . . 6 (((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ⊆ ℚ ∧ ℚ ∈ V) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ∈ V)
52, 3, 4mp2an 708 . . . . 5 (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ∈ V
65a1i 11 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ∈ V)
7 qndenserrnbllem.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
8 elmapi 7879 . . . . . . . . . . . 12 (𝑋 ∈ (ℝ ↑𝑚 𝐼) → 𝑋:𝐼⟶ℝ)
97, 8syl 17 . . . . . . . . . . 11 (𝜑𝑋:𝐼⟶ℝ)
109adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑋:𝐼⟶ℝ)
11 simpr 477 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝑘𝐼)
1210, 11ffvelrnd 6360 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ)
1312rexrd 10089 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) ∈ ℝ*)
14 qndenserrnbllem.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
1514rpred 11872 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
1615adantr 481 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ)
17 ne0i 3921 . . . . . . . . . . . . . . 15 (𝑘𝐼𝐼 ≠ ∅)
1817adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → 𝐼 ≠ ∅)
19 hashnncl 13157 . . . . . . . . . . . . . . . 16 (𝐼 ∈ Fin → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
201, 19syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2120adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐼) → ((#‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
2218, 21mpbird 247 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (#‘𝐼) ∈ ℕ)
2322nnred 11035 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → (#‘𝐼) ∈ ℝ)
24 0red 10041 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 ∈ ℝ)
2522nngt0d 11064 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → 0 < (#‘𝐼))
2624, 23, 25ltled 10185 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 ≤ (#‘𝐼))
2723, 26resqrtcld 14156 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(#‘𝐼)) ∈ ℝ)
2823, 25elrpd 11869 . . . . . . . . . . . . 13 ((𝜑𝑘𝐼) → (#‘𝐼) ∈ ℝ+)
2928sqrtgt0d 14151 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → 0 < (√‘(#‘𝐼)))
3024, 29gtned 10172 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (√‘(#‘𝐼)) ≠ 0)
3116, 27, 30redivcld 10853 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐸 / (√‘(#‘𝐼))) ∈ ℝ)
3212, 31readdcld 10069 . . . . . . . . 9 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ)
3332rexrd 10089 . . . . . . . 8 ((𝜑𝑘𝐼) → ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ*)
3414adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝐸 ∈ ℝ+)
3527, 29elrpd 11869 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (√‘(#‘𝐼)) ∈ ℝ+)
3634, 35rpdivcld 11889 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐸 / (√‘(#‘𝐼))) ∈ ℝ+)
3712, 36ltaddrpd 11905 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))
38 qbtwnxr 12031 . . . . . . . 8 (((𝑋𝑘) ∈ ℝ* ∧ ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ* ∧ (𝑋𝑘) < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))
3913, 33, 37, 38syl3anc 1326 . . . . . . 7 ((𝜑𝑘𝐼) → ∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))
40 df-rex 2918 . . . . . . 7 (∃𝑞 ∈ ℚ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))) ↔ ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))
4139, 40sylib 208 . . . . . 6 ((𝜑𝑘𝐼) → ∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))
42 simprl 794 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → 𝑞 ∈ ℚ)
4313adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → (𝑋𝑘) ∈ ℝ*)
4433adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ*)
45 qre 11793 . . . . . . . . . . 11 (𝑞 ∈ ℚ → 𝑞 ∈ ℝ)
4645ad2antrl 764 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → 𝑞 ∈ ℝ)
47 simprrl 804 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → (𝑋𝑘) < 𝑞)
48 simprrr 805 . . . . . . . . . 10 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → 𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))
4943, 44, 46, 47, 48eliood 39720 . . . . . . . . 9 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → 𝑞 ∈ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))
5042, 49elind 3798 . . . . . . . 8 (((𝜑𝑘𝐼) ∧ (𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))
5150ex 450 . . . . . . 7 ((𝜑𝑘𝐼) → ((𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) → 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))))
5251eximdv 1846 . . . . . 6 ((𝜑𝑘𝐼) → (∃𝑞(𝑞 ∈ ℚ ∧ ((𝑋𝑘) < 𝑞𝑞 < ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))))
5341, 52mpd 15 . . . . 5 ((𝜑𝑘𝐼) → ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))
54 n0 3931 . . . . 5 ((ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ≠ ∅ ↔ ∃𝑞 𝑞 ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))
5553, 54sylibr 224 . . . 4 ((𝜑𝑘𝐼) → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ≠ ∅)
561, 6, 55choicefi 39392 . . 3 (𝜑 → ∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))))
572a1i 11 . . . . . . . . . . . 12 (𝑦 Fn 𝐼 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ⊆ ℚ)
5857sseld 3602 . . . . . . . . . . 11 (𝑦 Fn 𝐼 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) → (𝑦𝑘) ∈ ℚ))
5958ralimdv 2963 . . . . . . . . . 10 (𝑦 Fn 𝐼 → (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) → ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6059imdistani 726 . . . . . . . . 9 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
61 ffnfv 6388 . . . . . . . . 9 (𝑦:𝐼⟶ℚ ↔ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ ℚ))
6260, 61sylibr 224 . . . . . . . 8 ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → 𝑦:𝐼⟶ℚ)
6362adantl 482 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝑦:𝐼⟶ℚ)
643a1i 11 . . . . . . . . 9 (𝜑 → ℚ ∈ V)
65 elmapg 7870 . . . . . . . . 9 ((ℚ ∈ V ∧ 𝐼 ∈ Fin) → (𝑦 ∈ (ℚ ↑𝑚 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6664, 1, 65syl2anc 693 . . . . . . . 8 (𝜑 → (𝑦 ∈ (ℚ ↑𝑚 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6766adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑𝑚 𝐼) ↔ 𝑦:𝐼⟶ℚ))
6863, 67mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝑦 ∈ (ℚ ↑𝑚 𝐼))
69 reex 10027 . . . . . . . . . . 11 ℝ ∈ V
7045ssriv 3607 . . . . . . . . . . 11 ℚ ⊆ ℝ
71 mapss 7900 . . . . . . . . . . 11 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑𝑚 𝐼) ⊆ (ℝ ↑𝑚 𝐼))
7269, 70, 71mp2an 708 . . . . . . . . . 10 (ℚ ↑𝑚 𝐼) ⊆ (ℝ ↑𝑚 𝐼)
7372a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (ℚ ↑𝑚 𝐼) ⊆ (ℝ ↑𝑚 𝐼))
7473, 68sseldd 3604 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝑦 ∈ (ℝ ↑𝑚 𝐼))
751adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝐼 ∈ Fin)
76 qndenserrnbllem.n . . . . . . . . . . 11 (𝜑𝐼 ≠ ∅)
7776adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝐼 ≠ ∅)
78 eqid 2622 . . . . . . . . . 10 (#‘𝐼) = (#‘𝐼)
797adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝑋 ∈ (ℝ ↑𝑚 𝐼))
80 simpll 790 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) ∧ 𝑖𝐼) → 𝜑)
81 fveq2 6191 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑦𝑘) = (𝑦𝑖))
82 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝑋𝑘) = (𝑋𝑖))
8382oveq1d 6665 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → ((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))) = ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))
8482, 83oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))) = ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))))
8584ineq2d 3814 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) = (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))))
8681, 85eleq12d 2695 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → ((𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ↔ (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))))))
8786cbvralv 3171 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ↔ ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))))
8887biimpi 206 . . . . . . . . . . . . . . . 16 (∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))))
8988adantr 481 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ∧ 𝑖𝐼) → ∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))))
90 simpr 477 . . . . . . . . . . . . . . 15 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ∧ 𝑖𝐼) → 𝑖𝐼)
91 rspa 2930 . . . . . . . . . . . . . . 15 ((∀𝑖𝐼 (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))))
9289, 90, 91syl2anc 693 . . . . . . . . . . . . . 14 ((∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))))
9392adantll 750 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))))
94 elinel2 3800 . . . . . . . . . . . . 13 ((𝑦𝑖) ∈ (ℚ ∩ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))))
9593, 94syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))))
96 simpr 477 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) ∧ 𝑖𝐼) → 𝑖𝐼)
979ffvelrnda 6359 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
98973adant2 1080 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ)
99 simp2 1062 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))))
10099elioored 39776 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) ∈ ℝ)
10198rexrd 10089 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℝ*)
10215adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → 𝐸 ∈ ℝ)
10376, 20mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (#‘𝐼) ∈ ℕ)
104103nnred 11035 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (#‘𝐼) ∈ ℝ)
105104adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → (#‘𝐼) ∈ ℝ)
106 0red 10041 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
107103nngt0d 11064 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 < (#‘𝐼))
108106, 104, 107ltled 10185 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (#‘𝐼))
109108adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝐼) → 0 ≤ (#‘𝐼))
110105, 109resqrtcld 14156 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(#‘𝐼)) ∈ ℝ)
111 sqrtgt0 13999 . . . . . . . . . . . . . . . . . . . . . . 23 (((#‘𝐼) ∈ ℝ ∧ 0 < (#‘𝐼)) → 0 < (√‘(#‘𝐼)))
112104, 107, 111syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 < (√‘(#‘𝐼)))
113106, 112gtned 10172 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (√‘(#‘𝐼)) ≠ 0)
114113adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝐼) → (√‘(#‘𝐼)) ≠ 0)
115102, 110, 114redivcld 10853 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝐼) → (𝐸 / (√‘(#‘𝐼))) ∈ ℝ)
11697, 115readdcld 10069 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ)
117116rexrd 10089 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ*)
1181173adant2 1080 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ*)
119 ioogtlb 39717 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))) → (𝑋𝑖) < (𝑦𝑖))
120101, 118, 99, 119syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) < (𝑦𝑖))
12198, 100, 120ltled 10185 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ≤ (𝑦𝑖))
12298, 100, 121abssuble0d 14171 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) = ((𝑦𝑖) − (𝑋𝑖)))
1231163adant2 1080 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ)
124 iooltub 39735 . . . . . . . . . . . . . . . 16 (((𝑋𝑖) ∈ ℝ* ∧ ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) ∈ ℝ* ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))
125101, 118, 99, 124syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑦𝑖) < ((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))))
126100, 123, 98, 125ltsub1dd 10639 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) − (𝑋𝑖)))
12798recnd 10068 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝑋𝑖) ∈ ℂ)
128104, 108resqrtcld 14156 . . . . . . . . . . . . . . . . . 18 (𝜑 → (√‘(#‘𝐼)) ∈ ℝ)
12915, 128, 113redivcld 10853 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸 / (√‘(#‘𝐼))) ∈ ℝ)
130129recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 / (√‘(#‘𝐼))) ∈ ℂ)
1311303ad2ant1 1082 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (𝐸 / (√‘(#‘𝐼))) ∈ ℂ)
132127, 131pncan2d 10394 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼)))) − (𝑋𝑖)) = (𝐸 / (√‘(#‘𝐼))))
133126, 132breqtrd 4679 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → ((𝑦𝑖) − (𝑋𝑖)) < (𝐸 / (√‘(#‘𝐼))))
134122, 133eqbrtrd 4675 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑖) ∈ ((𝑋𝑖)(,)((𝑋𝑖) + (𝐸 / (√‘(#‘𝐼))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(#‘𝐼))))
13580, 95, 96, 134syl3anc 1326 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(#‘𝐼))))
136135adantlrl 756 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) ∧ 𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑦𝑖))) < (𝐸 / (√‘(#‘𝐼))))
13714adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝐸 ∈ ℝ+)
138104, 107elrpd 11869 . . . . . . . . . . . . 13 (𝜑 → (#‘𝐼) ∈ ℝ+)
139138adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (#‘𝐼) ∈ ℝ+)
140139rpsqrtcld 14150 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (√‘(#‘𝐼)) ∈ ℝ+)
141137, 140rpdivcld 11889 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (𝐸 / (√‘(#‘𝐼))) ∈ ℝ+)
142 qndenserrnbllem.d . . . . . . . . . 10 𝐷 = (dist‘(ℝ^‘𝐼))
14375, 77, 78, 79, 74, 136, 141, 142rrndistlt 40510 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (𝑋𝐷𝑦) < ((√‘(#‘𝐼)) · (𝐸 / (√‘(#‘𝐼)))))
144137rpcnd 11874 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝐸 ∈ ℂ)
145139rpcnd 11874 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (#‘𝐼) ∈ ℂ)
146145sqrtcld 14176 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (√‘(#‘𝐼)) ∈ ℂ)
147140rpne0d 11877 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (√‘(#‘𝐼)) ≠ 0)
148144, 146, 147divcan2d 10803 . . . . . . . . 9 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → ((√‘(#‘𝐼)) · (𝐸 / (√‘(#‘𝐼)))) = 𝐸)
149143, 148breqtrd 4679 . . . . . . . 8 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (𝑋𝐷𝑦) < 𝐸)
15074, 149jca 554 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (𝑦 ∈ (ℝ ↑𝑚 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸))
151142rrxmetfi 40507 . . . . . . . . . . 11 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
1521, 151syl 17 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
153 metxmet 22139 . . . . . . . . . 10 (𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)))
154152, 153syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)))
15515rexrd 10089 . . . . . . . . 9 (𝜑𝐸 ∈ ℝ*)
156 elbl 22193 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)) ∧ 𝑋 ∈ (ℝ ↑𝑚 𝐼) ∧ 𝐸 ∈ ℝ*) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑𝑚 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
157154, 7, 155, 156syl3anc 1326 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑𝑚 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
158157adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ (𝑦 ∈ (ℝ ↑𝑚 𝐼) ∧ (𝑋𝐷𝑦) < 𝐸)))
159150, 158mpbird 247 . . . . . 6 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
16068, 159jca 554 . . . . 5 ((𝜑 ∧ (𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼)))))))) → (𝑦 ∈ (ℚ ↑𝑚 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
161160ex 450 . . . 4 (𝜑 → ((𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → (𝑦 ∈ (ℚ ↑𝑚 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
162161eximdv 1846 . . 3 (𝜑 → (∃𝑦(𝑦 Fn 𝐼 ∧ ∀𝑘𝐼 (𝑦𝑘) ∈ (ℚ ∩ ((𝑋𝑘)(,)((𝑋𝑘) + (𝐸 / (√‘(#‘𝐼))))))) → ∃𝑦(𝑦 ∈ (ℚ ↑𝑚 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸))))
16356, 162mpd 15 . 2 (𝜑 → ∃𝑦(𝑦 ∈ (ℚ ↑𝑚 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
164 df-rex 2918 . 2 (∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸) ↔ ∃𝑦(𝑦 ∈ (ℚ ↑𝑚 𝐼) ∧ 𝑦 ∈ (𝑋(ball‘𝐷)𝐸)))
165163, 164sylibr 224 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  c0 3915   class class class wbr 4653   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  cq 11788  +crp 11832  (,)cioo 12175  #chash 13117  csqrt 13973  abscabs 13974  distcds 15950  ∞Metcxmt 19731  Metcme 19732  ballcbl 19733  ℝ^crrx 23171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xadd 11947  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-cnfld 19747  df-refld 19951  df-dsmm 20076  df-frlm 20091  df-nm 22387  df-tng 22389  df-tch 22969  df-rrx 23173
This theorem is referenced by:  qndenserrnbl  40515
  Copyright terms: Public domain W3C validator