HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem3 Structured version   Visualization version   GIF version

Theorem chscllem3 28498
Description: Lemma for chscl 28500. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1 (𝜑𝐴C )
chscl.2 (𝜑𝐵C )
chscl.3 (𝜑𝐵 ⊆ (⊥‘𝐴))
chscl.4 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
chscl.5 (𝜑𝐻𝑣 𝑢)
chscl.6 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
chscllem3.7 (𝜑𝑁 ∈ ℕ)
chscllem3.8 (𝜑𝐶𝐴)
chscllem3.9 (𝜑𝐷𝐵)
chscllem3.10 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
Assertion
Ref Expression
chscllem3 (𝜑𝐶 = (𝐹𝑁))
Distinct variable groups:   𝑢,𝑛,𝐴   𝜑,𝑛   𝐵,𝑛,𝑢   𝑛,𝐻,𝑢   𝑛,𝑁
Allowed substitution hints:   𝜑(𝑢)   𝐶(𝑢,𝑛)   𝐷(𝑢,𝑛)   𝐹(𝑢,𝑛)   𝑁(𝑢)

Proof of Theorem chscllem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 chscllem3.7 . . . . . 6 (𝜑𝑁 ∈ ℕ)
2 fveq2 6191 . . . . . . . 8 (𝑛 = 𝑁 → (𝐻𝑛) = (𝐻𝑁))
32fveq2d 6195 . . . . . . 7 (𝑛 = 𝑁 → ((proj𝐴)‘(𝐻𝑛)) = ((proj𝐴)‘(𝐻𝑁)))
4 chscl.6 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ ((proj𝐴)‘(𝐻𝑛)))
5 fvex 6201 . . . . . . 7 ((proj𝐴)‘(𝐻𝑁)) ∈ V
63, 4, 5fvmpt 6282 . . . . . 6 (𝑁 ∈ ℕ → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
71, 6syl 17 . . . . 5 (𝜑 → (𝐹𝑁) = ((proj𝐴)‘(𝐻𝑁)))
87eqcomd 2628 . . . 4 (𝜑 → ((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁))
9 chscl.1 . . . . 5 (𝜑𝐴C )
10 chscl.2 . . . . . . . . 9 (𝜑𝐵C )
11 chsh 28081 . . . . . . . . 9 (𝐵C𝐵S )
1210, 11syl 17 . . . . . . . 8 (𝜑𝐵S )
13 chsh 28081 . . . . . . . . . 10 (𝐴C𝐴S )
149, 13syl 17 . . . . . . . . 9 (𝜑𝐴S )
15 shocsh 28143 . . . . . . . . 9 (𝐴S → (⊥‘𝐴) ∈ S )
1614, 15syl 17 . . . . . . . 8 (𝜑 → (⊥‘𝐴) ∈ S )
17 chscl.3 . . . . . . . 8 (𝜑𝐵 ⊆ (⊥‘𝐴))
18 shless 28218 . . . . . . . 8 (((𝐵S ∧ (⊥‘𝐴) ∈ S𝐴S ) ∧ 𝐵 ⊆ (⊥‘𝐴)) → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
1912, 16, 14, 17, 18syl31anc 1329 . . . . . . 7 (𝜑 → (𝐵 + 𝐴) ⊆ ((⊥‘𝐴) + 𝐴))
20 shscom 28178 . . . . . . . 8 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
2114, 12, 20syl2anc 693 . . . . . . 7 (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴))
22 shscom 28178 . . . . . . . 8 ((𝐴S ∧ (⊥‘𝐴) ∈ S ) → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2314, 16, 22syl2anc 693 . . . . . . 7 (𝜑 → (𝐴 + (⊥‘𝐴)) = ((⊥‘𝐴) + 𝐴))
2419, 21, 233sstr4d 3648 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ⊆ (𝐴 + (⊥‘𝐴)))
25 chscl.4 . . . . . . 7 (𝜑𝐻:ℕ⟶(𝐴 + 𝐵))
2625, 1ffvelrnd 6360 . . . . . 6 (𝜑 → (𝐻𝑁) ∈ (𝐴 + 𝐵))
2724, 26sseldd 3604 . . . . 5 (𝜑 → (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴)))
28 pjpreeq 28257 . . . . 5 ((𝐴C ∧ (𝐻𝑁) ∈ (𝐴 + (⊥‘𝐴))) → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
299, 27, 28syl2anc 693 . . . 4 (𝜑 → (((proj𝐴)‘(𝐻𝑁)) = (𝐹𝑁) ↔ ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))))
308, 29mpbid 222 . . 3 (𝜑 → ((𝐹𝑁) ∈ 𝐴 ∧ ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧)))
3130simprd 479 . 2 (𝜑 → ∃𝑧 ∈ (⊥‘𝐴)(𝐻𝑁) = ((𝐹𝑁) + 𝑧))
3214adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐴S )
3316adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (⊥‘𝐴) ∈ S )
34 ocin 28155 . . . . . 6 (𝐴S → (𝐴 ∩ (⊥‘𝐴)) = 0)
3514, 34syl 17 . . . . 5 (𝜑 → (𝐴 ∩ (⊥‘𝐴)) = 0)
3635adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐴 ∩ (⊥‘𝐴)) = 0)
37 chscllem3.8 . . . . 5 (𝜑𝐶𝐴)
3837adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶𝐴)
3917adantr 481 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐵 ⊆ (⊥‘𝐴))
40 chscllem3.9 . . . . . 6 (𝜑𝐷𝐵)
4140adantr 481 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷𝐵)
4239, 41sseldd 3604 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐷 ∈ (⊥‘𝐴))
43 chscl.5 . . . . . . 7 (𝜑𝐻𝑣 𝑢)
449, 10, 17, 25, 43, 4chscllem1 28496 . . . . . 6 (𝜑𝐹:ℕ⟶𝐴)
4544, 1ffvelrnd 6360 . . . . 5 (𝜑 → (𝐹𝑁) ∈ 𝐴)
4645adantr 481 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐹𝑁) ∈ 𝐴)
47 simprl 794 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝑧 ∈ (⊥‘𝐴))
48 chscllem3.10 . . . . . 6 (𝜑 → (𝐻𝑁) = (𝐶 + 𝐷))
4948adantr 481 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = (𝐶 + 𝐷))
50 simprr 796 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐻𝑁) = ((𝐹𝑁) + 𝑧))
5149, 50eqtr3d 2658 . . . 4 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 + 𝐷) = ((𝐹𝑁) + 𝑧))
5232, 33, 36, 38, 42, 46, 47, 51shuni 28159 . . 3 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → (𝐶 = (𝐹𝑁) ∧ 𝐷 = 𝑧))
5352simpld 475 . 2 ((𝜑 ∧ (𝑧 ∈ (⊥‘𝐴) ∧ (𝐻𝑁) = ((𝐹𝑁) + 𝑧))) → 𝐶 = (𝐹𝑁))
5431, 53rexlimddv 3035 1 (𝜑𝐶 = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  cin 3573  wss 3574   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cn 11020   + cva 27777  𝑣 chli 27784   S csh 27785   C cch 27786  cort 27787   + cph 27788  0c0h 27792  projcpjh 27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-pjh 28254
This theorem is referenced by:  chscllem4  28499
  Copyright terms: Public domain W3C validator