HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem3 Structured version   Visualization version   Unicode version

Theorem chscllem3 28498
Description: Lemma for chscl 28500. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj h `  A ) `  ( H `  n )
) )
chscllem3.7  |-  ( ph  ->  N  e.  NN )
chscllem3.8  |-  ( ph  ->  C  e.  A )
chscllem3.9  |-  ( ph  ->  D  e.  B )
chscllem3.10  |-  ( ph  ->  ( H `  N
)  =  ( C  +h  D ) )
Assertion
Ref Expression
chscllem3  |-  ( ph  ->  C  =  ( F `
 N ) )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u    n, N
Allowed substitution hints:    ph( u)    C( u, n)    D( u, n)    F( u, n)    N( u)

Proof of Theorem chscllem3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 chscllem3.7 . . . . . 6  |-  ( ph  ->  N  e.  NN )
2 fveq2 6191 . . . . . . . 8  |-  ( n  =  N  ->  ( H `  n )  =  ( H `  N ) )
32fveq2d 6195 . . . . . . 7  |-  ( n  =  N  ->  (
( proj h `  A ) `  ( H `  n )
)  =  ( (
proj h `  A ) `
 ( H `  N ) ) )
4 chscl.6 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  ( ( proj h `  A ) `  ( H `  n )
) )
5 fvex 6201 . . . . . . 7  |-  ( (
proj h `  A ) `
 ( H `  N ) )  e. 
_V
63, 4, 5fvmpt 6282 . . . . . 6  |-  ( N  e.  NN  ->  ( F `  N )  =  ( ( proj h `  A ) `  ( H `  N
) ) )
71, 6syl 17 . . . . 5  |-  ( ph  ->  ( F `  N
)  =  ( (
proj h `  A ) `
 ( H `  N ) ) )
87eqcomd 2628 . . . 4  |-  ( ph  ->  ( ( proj h `  A ) `  ( H `  N )
)  =  ( F `
 N ) )
9 chscl.1 . . . . 5  |-  ( ph  ->  A  e.  CH )
10 chscl.2 . . . . . . . . 9  |-  ( ph  ->  B  e.  CH )
11 chsh 28081 . . . . . . . . 9  |-  ( B  e.  CH  ->  B  e.  SH )
1210, 11syl 17 . . . . . . . 8  |-  ( ph  ->  B  e.  SH )
13 chsh 28081 . . . . . . . . . 10  |-  ( A  e.  CH  ->  A  e.  SH )
149, 13syl 17 . . . . . . . . 9  |-  ( ph  ->  A  e.  SH )
15 shocsh 28143 . . . . . . . . 9  |-  ( A  e.  SH  ->  ( _|_ `  A )  e.  SH )
1614, 15syl 17 . . . . . . . 8  |-  ( ph  ->  ( _|_ `  A
)  e.  SH )
17 chscl.3 . . . . . . . 8  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
18 shless 28218 . . . . . . . 8  |-  ( ( ( B  e.  SH  /\  ( _|_ `  A
)  e.  SH  /\  A  e.  SH )  /\  B  C_  ( _|_ `  A ) )  -> 
( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
1912, 16, 14, 17, 18syl31anc 1329 . . . . . . 7  |-  ( ph  ->  ( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
20 shscom 28178 . . . . . . . 8  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
2114, 12, 20syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
22 shscom 28178 . . . . . . . 8  |-  ( ( A  e.  SH  /\  ( _|_ `  A )  e.  SH )  -> 
( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
2314, 16, 22syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
2419, 21, 233sstr4d 3648 . . . . . 6  |-  ( ph  ->  ( A  +H  B
)  C_  ( A  +H  ( _|_ `  A
) ) )
25 chscl.4 . . . . . . 7  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
2625, 1ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( H `  N
)  e.  ( A  +H  B ) )
2724, 26sseldd 3604 . . . . 5  |-  ( ph  ->  ( H `  N
)  e.  ( A  +H  ( _|_ `  A
) ) )
28 pjpreeq 28257 . . . . 5  |-  ( ( A  e.  CH  /\  ( H `  N )  e.  ( A  +H  ( _|_ `  A ) ) )  ->  (
( ( proj h `  A ) `  ( H `  N )
)  =  ( F `
 N )  <->  ( ( F `  N )  e.  A  /\  E. z  e.  ( _|_ `  A
) ( H `  N )  =  ( ( F `  N
)  +h  z ) ) ) )
299, 27, 28syl2anc 693 . . . 4  |-  ( ph  ->  ( ( ( proj h `  A ) `  ( H `  N
) )  =  ( F `  N )  <-> 
( ( F `  N )  e.  A  /\  E. z  e.  ( _|_ `  A ) ( H `  N
)  =  ( ( F `  N )  +h  z ) ) ) )
308, 29mpbid 222 . . 3  |-  ( ph  ->  ( ( F `  N )  e.  A  /\  E. z  e.  ( _|_ `  A ) ( H `  N
)  =  ( ( F `  N )  +h  z ) ) )
3130simprd 479 . 2  |-  ( ph  ->  E. z  e.  ( _|_ `  A ) ( H `  N
)  =  ( ( F `  N )  +h  z ) )
3214adantr 481 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  A  e.  SH )
3316adantr 481 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( _|_ `  A )  e.  SH )
34 ocin 28155 . . . . . 6  |-  ( A  e.  SH  ->  ( A  i^i  ( _|_ `  A
) )  =  0H )
3514, 34syl 17 . . . . 5  |-  ( ph  ->  ( A  i^i  ( _|_ `  A ) )  =  0H )
3635adantr 481 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( A  i^i  ( _|_ `  A
) )  =  0H )
37 chscllem3.8 . . . . 5  |-  ( ph  ->  C  e.  A )
3837adantr 481 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  C  e.  A )
3917adantr 481 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  B  C_  ( _|_ `  A
) )
40 chscllem3.9 . . . . . 6  |-  ( ph  ->  D  e.  B )
4140adantr 481 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  D  e.  B )
4239, 41sseldd 3604 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  D  e.  ( _|_ `  A
) )
43 chscl.5 . . . . . . 7  |-  ( ph  ->  H  ~~>v  u )
449, 10, 17, 25, 43, 4chscllem1 28496 . . . . . 6  |-  ( ph  ->  F : NN --> A )
4544, 1ffvelrnd 6360 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  A )
4645adantr 481 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( F `  N )  e.  A )
47 simprl 794 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  z  e.  ( _|_ `  A
) )
48 chscllem3.10 . . . . . 6  |-  ( ph  ->  ( H `  N
)  =  ( C  +h  D ) )
4948adantr 481 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( H `  N )  =  ( C  +h  D ) )
50 simprr 796 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( H `  N )  =  ( ( F `
 N )  +h  z ) )
5149, 50eqtr3d 2658 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( C  +h  D )  =  ( ( F `  N )  +h  z
) )
5232, 33, 36, 38, 42, 46, 47, 51shuni 28159 . . 3  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( C  =  ( F `  N )  /\  D  =  z ) )
5352simpld 475 . 2  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  C  =  ( F `  N ) )
5431, 53rexlimddv 3035 1  |-  ( ph  ->  C  =  ( F `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   NNcn 11020    +h cva 27777    ~~>v chli 27784   SHcsh 27785   CHcch 27786   _|_cort 27787    +H cph 27788   0Hc0h 27792   proj hcpjh 27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-pjh 28254
This theorem is referenced by:  chscllem4  28499
  Copyright terms: Public domain W3C validator