| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chscllem3 | Structured version Visualization version Unicode version | ||
| Description: Lemma for chscl 28500. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chscl.1 |
|
| chscl.2 |
|
| chscl.3 |
|
| chscl.4 |
|
| chscl.5 |
|
| chscl.6 |
|
| chscllem3.7 |
|
| chscllem3.8 |
|
| chscllem3.9 |
|
| chscllem3.10 |
|
| Ref | Expression |
|---|---|
| chscllem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chscllem3.7 |
. . . . . 6
| |
| 2 | fveq2 6191 |
. . . . . . . 8
| |
| 3 | 2 | fveq2d 6195 |
. . . . . . 7
|
| 4 | chscl.6 |
. . . . . . 7
| |
| 5 | fvex 6201 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | fvmpt 6282 |
. . . . . 6
|
| 7 | 1, 6 | syl 17 |
. . . . 5
|
| 8 | 7 | eqcomd 2628 |
. . . 4
|
| 9 | chscl.1 |
. . . . 5
| |
| 10 | chscl.2 |
. . . . . . . . 9
| |
| 11 | chsh 28081 |
. . . . . . . . 9
| |
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
|
| 13 | chsh 28081 |
. . . . . . . . . 10
| |
| 14 | 9, 13 | syl 17 |
. . . . . . . . 9
|
| 15 | shocsh 28143 |
. . . . . . . . 9
| |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
|
| 17 | chscl.3 |
. . . . . . . 8
| |
| 18 | shless 28218 |
. . . . . . . 8
| |
| 19 | 12, 16, 14, 17, 18 | syl31anc 1329 |
. . . . . . 7
|
| 20 | shscom 28178 |
. . . . . . . 8
| |
| 21 | 14, 12, 20 | syl2anc 693 |
. . . . . . 7
|
| 22 | shscom 28178 |
. . . . . . . 8
| |
| 23 | 14, 16, 22 | syl2anc 693 |
. . . . . . 7
|
| 24 | 19, 21, 23 | 3sstr4d 3648 |
. . . . . 6
|
| 25 | chscl.4 |
. . . . . . 7
| |
| 26 | 25, 1 | ffvelrnd 6360 |
. . . . . 6
|
| 27 | 24, 26 | sseldd 3604 |
. . . . 5
|
| 28 | pjpreeq 28257 |
. . . . 5
| |
| 29 | 9, 27, 28 | syl2anc 693 |
. . . 4
|
| 30 | 8, 29 | mpbid 222 |
. . 3
|
| 31 | 30 | simprd 479 |
. 2
|
| 32 | 14 | adantr 481 |
. . . 4
|
| 33 | 16 | adantr 481 |
. . . 4
|
| 34 | ocin 28155 |
. . . . . 6
| |
| 35 | 14, 34 | syl 17 |
. . . . 5
|
| 36 | 35 | adantr 481 |
. . . 4
|
| 37 | chscllem3.8 |
. . . . 5
| |
| 38 | 37 | adantr 481 |
. . . 4
|
| 39 | 17 | adantr 481 |
. . . . 5
|
| 40 | chscllem3.9 |
. . . . . 6
| |
| 41 | 40 | adantr 481 |
. . . . 5
|
| 42 | 39, 41 | sseldd 3604 |
. . . 4
|
| 43 | chscl.5 |
. . . . . . 7
| |
| 44 | 9, 10, 17, 25, 43, 4 | chscllem1 28496 |
. . . . . 6
|
| 45 | 44, 1 | ffvelrnd 6360 |
. . . . 5
|
| 46 | 45 | adantr 481 |
. . . 4
|
| 47 | simprl 794 |
. . . 4
| |
| 48 | chscllem3.10 |
. . . . . 6
| |
| 49 | 48 | adantr 481 |
. . . . 5
|
| 50 | simprr 796 |
. . . . 5
| |
| 51 | 49, 50 | eqtr3d 2658 |
. . . 4
|
| 52 | 32, 33, 36, 38, 42, 46, 47, 51 | shuni 28159 |
. . 3
|
| 53 | 52 | simpld 475 |
. 2
|
| 54 | 31, 53 | rexlimddv 3035 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvmulass 27864 ax-hvdistr1 27865 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-grpo 27347 df-ablo 27399 df-hvsub 27828 df-sh 28064 df-ch 28078 df-oc 28109 df-ch0 28110 df-shs 28167 df-pjh 28254 |
| This theorem is referenced by: chscllem4 28499 |
| Copyright terms: Public domain | W3C validator |