| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. 2
⊢
Ⅎ𝑖𝜑 |
| 2 | | nfcv 2764 |
. 2
⊢
Ⅎ𝑖(𝑘 ∈ 𝑍 ↦ 𝐵) |
| 3 | | climinfmpt.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | | climinfmpt.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | | climinfmpt.p |
. . 3
⊢
Ⅎ𝑘𝜑 |
| 6 | | climinfmpt.b |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 7 | 5, 6 | fmptd2f 39442 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
| 8 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑖 ∈ 𝑍 |
| 9 | 5, 8 | nfan 1828 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 10 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑘⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶 |
| 11 | 9, 10 | nfim 1825 |
. . . . 5
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶) |
| 12 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) |
| 13 | 12 | anbi2d 740 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
| 14 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1)) |
| 15 | 14 | csbeq1d 3540 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ⦋(𝑘 + 1) / 𝑗⦌𝐶 = ⦋(𝑖 + 1) / 𝑗⦌𝐶) |
| 16 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → 𝐵 = 𝐵) |
| 17 | | csbco 3543 |
. . . . . . . . . . 11
⊢
⦋𝑘 /
𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑘 / 𝑘⦌𝐵 |
| 18 | | csbid 3541 |
. . . . . . . . . . 11
⊢
⦋𝑘 /
𝑘⦌𝐵 = 𝐵 |
| 19 | 17, 18 | eqtr2i 2645 |
. . . . . . . . . 10
⊢ 𝐵 = ⦋𝑘 / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 |
| 20 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝐵 |
| 21 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝐶 |
| 22 | | climinfmpt.c |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → 𝐵 = 𝐶) |
| 23 | 20, 21, 22 | cbvcsb 3538 |
. . . . . . . . . . . 12
⊢
⦋𝑗 /
𝑘⦌𝐵 = ⦋𝑗 / 𝑗⦌𝐶 |
| 24 | | csbid 3541 |
. . . . . . . . . . . 12
⊢
⦋𝑗 /
𝑗⦌𝐶 = 𝐶 |
| 25 | 23, 24 | eqtri 2644 |
. . . . . . . . . . 11
⊢
⦋𝑗 /
𝑘⦌𝐵 = 𝐶 |
| 26 | 25 | csbeq2i 3993 |
. . . . . . . . . 10
⊢
⦋𝑘 /
𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋𝑘 / 𝑗⦌𝐶 |
| 27 | 19, 26 | eqtri 2644 |
. . . . . . . . 9
⊢ 𝐵 = ⦋𝑘 / 𝑗⦌𝐶 |
| 28 | 27 | a1i 11 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑘 / 𝑗⦌𝐶) |
| 29 | | csbeq1 3536 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → ⦋𝑘 / 𝑗⦌𝐶 = ⦋𝑖 / 𝑗⦌𝐶) |
| 30 | 16, 28, 29 | 3eqtrd 2660 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑗⦌𝐶) |
| 31 | 15, 30 | breq12d 4666 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵 ↔ ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶)) |
| 32 | 13, 31 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶))) |
| 33 | | simpl 473 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝜑) |
| 34 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
| 35 | | eqidd 2623 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 + 1) = (𝑘 + 1)) |
| 36 | | climinfmpt.j |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
| 37 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑗 𝑘 ∈ 𝑍 |
| 38 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝑘 + 1) = (𝑘 + 1) |
| 39 | 36, 37, 38 | nf3an 1831 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) |
| 40 | | nfcsb1v 3549 |
. . . . . . . . 9
⊢
Ⅎ𝑗⦋(𝑘 + 1) / 𝑗⦌𝐶 |
| 41 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑗
≤ |
| 42 | 40, 41, 20 | nfbr 4699 |
. . . . . . . 8
⊢
Ⅎ𝑗⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵 |
| 43 | 39, 42 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) |
| 44 | | ovex 6678 |
. . . . . . 7
⊢ (𝑘 + 1) ∈ V |
| 45 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1))) |
| 46 | 45 | 3anbi3d 1405 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) ↔ (𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)))) |
| 47 | | csbeq1a 3542 |
. . . . . . . . 9
⊢ (𝑗 = (𝑘 + 1) → 𝐶 = ⦋(𝑘 + 1) / 𝑗⦌𝐶) |
| 48 | 47 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑗 = (𝑘 + 1) → (𝐶 ≤ 𝐵 ↔ ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵)) |
| 49 | 46, 48 | imbi12d 334 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵))) |
| 50 | | climinfmpt.l |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ 𝑗 = (𝑘 + 1)) → 𝐶 ≤ 𝐵) |
| 51 | 43, 44, 49, 50 | vtoclf 3258 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) |
| 52 | 33, 34, 35, 51 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ⦋(𝑘 + 1) / 𝑗⦌𝐶 ≤ 𝐵) |
| 53 | 11, 32, 52 | chvar 2262 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶) |
| 54 | | csbco 3543 |
. . . . . . . 8
⊢
⦋(𝑖 +
1) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋(𝑖 + 1) / 𝑘⦌𝐵 |
| 55 | 54 | eqcomi 2631 |
. . . . . . 7
⊢
⦋(𝑖 +
1) / 𝑘⦌𝐵 = ⦋(𝑖 + 1) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 |
| 56 | 25 | csbeq2i 3993 |
. . . . . . 7
⊢
⦋(𝑖 +
1) / 𝑗⦌⦋𝑗 / 𝑘⦌𝐵 = ⦋(𝑖 + 1) / 𝑗⦌𝐶 |
| 57 | 55, 56 | eqtri 2644 |
. . . . . 6
⊢
⦋(𝑖 +
1) / 𝑘⦌𝐵 = ⦋(𝑖 + 1) / 𝑗⦌𝐶 |
| 58 | 57 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 = ⦋(𝑖 + 1) / 𝑗⦌𝐶) |
| 59 | | eqidd 2623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 = ⦋𝑖 / 𝑗⦌𝐶) |
| 60 | 58, 59 | breq12d 4666 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (⦋(𝑖 + 1) / 𝑘⦌𝐵 ≤ ⦋𝑖 / 𝑗⦌𝐶 ↔ ⦋(𝑖 + 1) / 𝑗⦌𝐶 ≤ ⦋𝑖 / 𝑗⦌𝐶)) |
| 61 | 53, 60 | mpbird 247 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ≤ ⦋𝑖 / 𝑗⦌𝐶) |
| 62 | 3 | peano2uzs 11742 |
. . . . . 6
⊢ (𝑖 ∈ 𝑍 → (𝑖 + 1) ∈ 𝑍) |
| 63 | 62 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖 + 1) ∈ 𝑍) |
| 64 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑖 + 1) ∈ 𝑍 |
| 65 | 5, 64 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍) |
| 66 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑖 + 1) |
| 67 | 66 | nfcsb1 3548 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋(𝑖 + 1) / 𝑘⦌𝐵 |
| 68 | 67 | nfel1 2779 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ |
| 69 | 65, 68 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) |
| 70 | | ovex 6678 |
. . . . . . 7
⊢ (𝑖 + 1) ∈ V |
| 71 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑘 = (𝑖 + 1) → (𝑘 ∈ 𝑍 ↔ (𝑖 + 1) ∈ 𝑍)) |
| 72 | 71 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑘 = (𝑖 + 1) → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍))) |
| 73 | | csbeq1a 3542 |
. . . . . . . . 9
⊢ (𝑘 = (𝑖 + 1) → 𝐵 = ⦋(𝑖 + 1) / 𝑘⦌𝐵) |
| 74 | 73 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ)) |
| 75 | 72, 74 | imbi12d 334 |
. . . . . . 7
⊢ (𝑘 = (𝑖 + 1) → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ))) |
| 76 | 69, 70, 75, 6 | vtoclf 3258 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) |
| 77 | 62, 76 | sylan2 491 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) |
| 78 | | eqid 2622 |
. . . . . 6
⊢ (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵) |
| 79 | 66, 67, 73, 78 | fvmptf 6301 |
. . . . 5
⊢ (((𝑖 + 1) ∈ 𝑍 ∧ ⦋(𝑖 + 1) / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) = ⦋(𝑖 + 1) / 𝑘⦌𝐵) |
| 80 | 63, 77, 79 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) = ⦋(𝑖 + 1) / 𝑘⦌𝐵) |
| 81 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) |
| 82 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑖 ∈ 𝑍 |
| 83 | 36, 82 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑗(𝜑 ∧ 𝑖 ∈ 𝑍) |
| 84 | | nfcsb1v 3549 |
. . . . . . . 8
⊢
Ⅎ𝑗⦋𝑖 / 𝑗⦌𝐶 |
| 85 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑗ℝ |
| 86 | 84, 85 | nfel 2777 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ |
| 87 | 83, 86 | nfim 1825 |
. . . . . 6
⊢
Ⅎ𝑗((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ) |
| 88 | | eleq1 2689 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (𝑗 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) |
| 89 | 88 | anbi2d 740 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → ((𝜑 ∧ 𝑗 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
| 90 | | csbeq1a 3542 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → 𝐶 = ⦋𝑖 / 𝑗⦌𝐶) |
| 91 | 90 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ)) |
| 92 | 89, 91 | imbi12d 334 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ))) |
| 93 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑗 ∈ 𝑍 |
| 94 | 5, 93 | nfan 1828 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 95 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑘 𝐶 ∈ ℝ |
| 96 | 94, 95 | nfim 1825 |
. . . . . . 7
⊢
Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ) |
| 97 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
| 98 | 97 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 99 | 22 | eleq1d 2686 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ)) |
| 100 | 98, 99 | imbi12d 334 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ))) |
| 101 | 96, 100, 6 | chvar 2262 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐶 ∈ ℝ) |
| 102 | 87, 92, 101 | chvar 2262 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ) |
| 103 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑘𝑖 |
| 104 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑘⦋𝑖 / 𝑗⦌𝐶 |
| 105 | 103, 104,
30, 78 | fvmptf 6301 |
. . . . 5
⊢ ((𝑖 ∈ 𝑍 ∧ ⦋𝑖 / 𝑗⦌𝐶 ∈ ℝ) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) = ⦋𝑖 / 𝑗⦌𝐶) |
| 106 | 81, 102, 105 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) = ⦋𝑖 / 𝑗⦌𝐶) |
| 107 | 80, 106 | breq12d 4666 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ⦋(𝑖 + 1) / 𝑘⦌𝐵 ≤ ⦋𝑖 / 𝑗⦌𝐶)) |
| 108 | 61, 107 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘(𝑖 + 1)) ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖)) |
| 109 | | climinfmpt.e |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ 𝐵) |
| 110 | | breq1 4656 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≤ 𝐵 ↔ 𝑦 ≤ 𝐵)) |
| 111 | 110 | ralbidv 2986 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑍 𝑥 ≤ 𝐵 ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
| 112 | 111 | cbvrexv 3172 |
. . . 4
⊢
(∃𝑥 ∈
ℝ ∀𝑘 ∈
𝑍 𝑥 ≤ 𝐵 ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵) |
| 113 | 109, 112 | sylib 208 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵) |
| 114 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑘𝑦 |
| 115 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑘
≤ |
| 116 | | nfmpt1 4747 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ 𝐵) |
| 117 | 116, 103 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) |
| 118 | 114, 115,
117 | nfbr 4699 |
. . . . . . 7
⊢
Ⅎ𝑘 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) |
| 119 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑖 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) |
| 120 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) = ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 121 | 120 | breq2d 4665 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → (𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
| 122 | 118, 119,
121 | cbvral 3167 |
. . . . . 6
⊢
(∀𝑖 ∈
𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘)) |
| 123 | 122 | a1i 11 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘))) |
| 124 | 78 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) = (𝑘 ∈ 𝑍 ↦ 𝐵)) |
| 125 | 124, 6 | fvmpt2d 6293 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) = 𝐵) |
| 126 | 125 | breq2d 4665 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) ↔ 𝑦 ≤ 𝐵)) |
| 127 | 5, 126 | ralbida 2982 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑘) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
| 128 | 123, 127 | bitrd 268 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
| 129 | 128 | rexbidv 3052 |
. . 3
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖) ↔ ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ 𝐵)) |
| 130 | 113, 129 | mpbird 247 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑖 ∈ 𝑍 𝑦 ≤ ((𝑘 ∈ 𝑍 ↦ 𝐵)‘𝑖)) |
| 131 | 1, 2, 3, 4, 7, 108, 130 | climinf2 39939 |
1
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐵) ⇝ inf(ran (𝑘 ∈ 𝑍 ↦ 𝐵), ℝ*, <
)) |