Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2mpt Structured version   Visualization version   GIF version

Theorem climinf2mpt 39946
Description: A bounded below, monotonic non increasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2mpt.p 𝑘𝜑
climinf2mpt.j 𝑗𝜑
climinf2mpt.m (𝜑𝑀 ∈ ℤ)
climinf2mpt.z 𝑍 = (ℤ𝑀)
climinf2mpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
climinf2mpt.c (𝑘 = 𝑗𝐵 = 𝐶)
climinf2mpt.l ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
climinf2mpt.e (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
Assertion
Ref Expression
climinf2mpt (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑗   𝐶,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑘)   𝐶(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem climinf2mpt
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . 2 𝑖𝜑
2 nfcv 2764 . 2 𝑖(𝑘𝑍𝐵)
3 climinf2mpt.z . 2 𝑍 = (ℤ𝑀)
4 climinf2mpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climinf2mpt.p . . 3 𝑘𝜑
6 climinf2mpt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
75, 6fmptd2f 39442 . 2 (𝜑 → (𝑘𝑍𝐵):𝑍⟶ℝ)
8 nfv 1843 . . . . . . 7 𝑘 𝑖𝑍
95, 8nfan 1828 . . . . . 6 𝑘(𝜑𝑖𝑍)
10 nfv 1843 . . . . . 6 𝑘(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶
119, 10nfim 1825 . . . . 5 𝑘((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
12 eleq1 2689 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
1312anbi2d 740 . . . . . 6 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
14 oveq1 6657 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
1514csbeq1d 3540 . . . . . . 7 (𝑘 = 𝑖(𝑘 + 1) / 𝑗𝐶 = (𝑖 + 1) / 𝑗𝐶)
16 eqidd 2623 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝐵)
17 csbco 3543 . . . . . . . . . . 11 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
18 csbid 3541 . . . . . . . . . . 11 𝑘 / 𝑘𝐵 = 𝐵
1917, 18eqtr2i 2645 . . . . . . . . . 10 𝐵 = 𝑘 / 𝑗𝑗 / 𝑘𝐵
20 nfcv 2764 . . . . . . . . . . . . 13 𝑗𝐵
21 nfcv 2764 . . . . . . . . . . . . 13 𝑘𝐶
22 climinf2mpt.c . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝐶)
2320, 21, 22cbvcsb 3538 . . . . . . . . . . . 12 𝑗 / 𝑘𝐵 = 𝑗 / 𝑗𝐶
24 csbid 3541 . . . . . . . . . . . 12 𝑗 / 𝑗𝐶 = 𝐶
2523, 24eqtri 2644 . . . . . . . . . . 11 𝑗 / 𝑘𝐵 = 𝐶
2625csbeq2i 3993 . . . . . . . . . 10 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑗𝐶
2719, 26eqtri 2644 . . . . . . . . 9 𝐵 = 𝑘 / 𝑗𝐶
2827a1i 11 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝑘 / 𝑗𝐶)
29 csbeq1 3536 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
3016, 28, 293eqtrd 2660 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑗𝐶)
3115, 30breq12d 4666 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 + 1) / 𝑗𝐶𝐵(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
3213, 31imbi12d 334 . . . . 5 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵) ↔ ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)))
33 simpl 473 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
34 simpr 477 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
35 eqidd 2623 . . . . . 6 ((𝜑𝑘𝑍) → (𝑘 + 1) = (𝑘 + 1))
36 climinf2mpt.j . . . . . . . . 9 𝑗𝜑
37 nfv 1843 . . . . . . . . 9 𝑗 𝑘𝑍
38 nfv 1843 . . . . . . . . 9 𝑗(𝑘 + 1) = (𝑘 + 1)
3936, 37, 38nf3an 1831 . . . . . . . 8 𝑗(𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))
40 nfcsb1v 3549 . . . . . . . . 9 𝑗(𝑘 + 1) / 𝑗𝐶
41 nfcv 2764 . . . . . . . . 9 𝑗
4240, 41, 20nfbr 4699 . . . . . . . 8 𝑗(𝑘 + 1) / 𝑗𝐶𝐵
4339, 42nfim 1825 . . . . . . 7 𝑗((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
44 ovex 6678 . . . . . . 7 (𝑘 + 1) ∈ V
45 eqeq1 2626 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1)))
46453anbi3d 1405 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) ↔ (𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))))
47 csbeq1a 3542 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → 𝐶 = (𝑘 + 1) / 𝑗𝐶)
4847breq1d 4663 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐶𝐵(𝑘 + 1) / 𝑗𝐶𝐵))
4946, 48imbi12d 334 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵) ↔ ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)))
50 climinf2mpt.l . . . . . . 7 ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
5143, 44, 49, 50vtoclf 3258 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
5233, 34, 35, 51syl3anc 1326 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵)
5311, 32, 52chvar 2262 . . . 4 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
54 csbco 3543 . . . . . . . 8 (𝑖 + 1) / 𝑗𝑗 / 𝑘𝐵 = (𝑖 + 1) / 𝑘𝐵
5554eqcomi 2631 . . . . . . 7 (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝑗 / 𝑘𝐵
5625csbeq2i 3993 . . . . . . 7 (𝑖 + 1) / 𝑗𝑗 / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶
5755, 56eqtri 2644 . . . . . 6 (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶
5857a1i 11 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶)
59 eqidd 2623 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
6058, 59breq12d 4666 . . . 4 ((𝜑𝑖𝑍) → ((𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
6153, 60mpbird 247 . . 3 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶)
623peano2uzs 11742 . . . . . 6 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
6362adantl 482 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) ∈ 𝑍)
64 nfv 1843 . . . . . . . . 9 𝑘(𝑖 + 1) ∈ 𝑍
655, 64nfan 1828 . . . . . . . 8 𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍)
66 nfcv 2764 . . . . . . . . . 10 𝑘(𝑖 + 1)
6766nfcsb1 3548 . . . . . . . . 9 𝑘(𝑖 + 1) / 𝑘𝐵
6867nfel1 2779 . . . . . . . 8 𝑘(𝑖 + 1) / 𝑘𝐵 ∈ ℝ
6965, 68nfim 1825 . . . . . . 7 𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
70 ovex 6678 . . . . . . 7 (𝑖 + 1) ∈ V
71 eleq1 2689 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → (𝑘𝑍 ↔ (𝑖 + 1) ∈ 𝑍))
7271anbi2d 740 . . . . . . . 8 (𝑘 = (𝑖 + 1) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍)))
73 csbeq1a 3542 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑘𝐵)
7473eleq1d 2686 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ (𝑖 + 1) / 𝑘𝐵 ∈ ℝ))
7572, 74imbi12d 334 . . . . . . 7 (𝑘 = (𝑖 + 1) → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)))
7669, 70, 75, 6vtoclf 3258 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
7762, 76sylan2 491 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
78 eqid 2622 . . . . . 6 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
7966, 67, 73, 78fvmptf 6301 . . . . 5 (((𝑖 + 1) ∈ 𝑍(𝑖 + 1) / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
8063, 77, 79syl2anc 693 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
81 simpr 477 . . . . 5 ((𝜑𝑖𝑍) → 𝑖𝑍)
82 nfv 1843 . . . . . . . 8 𝑗 𝑖𝑍
8336, 82nfan 1828 . . . . . . 7 𝑗(𝜑𝑖𝑍)
84 nfcsb1v 3549 . . . . . . . 8 𝑗𝑖 / 𝑗𝐶
85 nfcv 2764 . . . . . . . 8 𝑗
8684, 85nfel 2777 . . . . . . 7 𝑗𝑖 / 𝑗𝐶 ∈ ℝ
8783, 86nfim 1825 . . . . . 6 𝑗((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
88 eleq1 2689 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝑍𝑖𝑍))
8988anbi2d 740 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑𝑗𝑍) ↔ (𝜑𝑖𝑍)))
90 csbeq1a 3542 . . . . . . . 8 (𝑗 = 𝑖𝐶 = 𝑖 / 𝑗𝐶)
9190eleq1d 2686 . . . . . . 7 (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ 𝑖 / 𝑗𝐶 ∈ ℝ))
9289, 91imbi12d 334 . . . . . 6 (𝑗 = 𝑖 → (((𝜑𝑗𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)))
93 nfv 1843 . . . . . . . . 9 𝑘 𝑗𝑍
945, 93nfan 1828 . . . . . . . 8 𝑘(𝜑𝑗𝑍)
95 nfv 1843 . . . . . . . 8 𝑘 𝐶 ∈ ℝ
9694, 95nfim 1825 . . . . . . 7 𝑘((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
97 eleq1 2689 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
9897anbi2d 740 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
9922eleq1d 2686 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
10098, 99imbi12d 334 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)))
10196, 100, 6chvar 2262 . . . . . 6 ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
10287, 92, 101chvar 2262 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
103 nfcv 2764 . . . . . 6 𝑘𝑖
104 nfcv 2764 . . . . . 6 𝑘𝑖 / 𝑗𝐶
105103, 104, 30, 78fvmptf 6301 . . . . 5 ((𝑖𝑍𝑖 / 𝑗𝐶 ∈ ℝ) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10681, 102, 105syl2anc 693 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10780, 106breq12d 4666 . . 3 ((𝜑𝑖𝑍) → (((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶))
10861, 107mpbird 247 . 2 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖))
109 climinf2mpt.e . . . . 5 (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
110106, 102eqeltrd 2701 . . . . . . 7 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℝ)
111110recnd 10068 . . . . . 6 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
112111ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
1132, 3climbddf 39919 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘𝑍𝐵) ∈ dom ⇝ ∧ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1144, 109, 112, 113syl3anc 1326 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1151, 110rexabsle2 39654 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥 ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))))
116114, 115mpbid 222 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖)))
117116simprd 479 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))
1181, 2, 3, 4, 7, 108, 117climinf2 39939 1 (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913  csb 3533   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  cfv 5888  (class class class)co 6650  infcinf 8347  cc 9934  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cz 11377  cuz 11687  abscabs 13974  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  smflimsuplem4  41029
  Copyright terms: Public domain W3C validator