MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncongrprm Structured version   Visualization version   GIF version

Theorem cncongrprm 15437
Description: Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
cncongrprm (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))

Proof of Theorem cncongrprm
StepHypRef Expression
1 prmnn 15388 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
21ad2antrl 764 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → 𝑃 ∈ ℕ)
3 coprm 15423 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃𝐶 ↔ (𝑃 gcd 𝐶) = 1))
4 prmz 15389 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
5 gcdcom 15235 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃))
64, 5sylan 488 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃))
76eqeq1d 2624 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → ((𝑃 gcd 𝐶) = 1 ↔ (𝐶 gcd 𝑃) = 1))
83, 7bitrd 268 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃𝐶 ↔ (𝐶 gcd 𝑃) = 1))
98ancoms 469 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃𝐶 ↔ (𝐶 gcd 𝑃) = 1))
109biimpd 219 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃𝐶 → (𝐶 gcd 𝑃) = 1))
1110expimpd 629 . . . . 5 (𝐶 ∈ ℤ → ((𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶) → (𝐶 gcd 𝑃) = 1))
12113ad2ant3 1084 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶) → (𝐶 gcd 𝑃) = 1))
1312imp 445 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (𝐶 gcd 𝑃) = 1)
142, 13jca 554 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1))
15 cncongrcoprm 15384 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))
1614, 15syldan 487 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  1c1 9937   · cmul 9941  cn 11020  cz 11377   mod cmo 12668  cdvds 14983   gcd cgcd 15216  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator