MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprm Structured version   Visualization version   GIF version

Theorem coprm 15423
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))

Proof of Theorem coprm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmz 15389 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2 gcddvds 15225 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
31, 2sylan 488 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
43simprd 479 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑁)
5 breq1 4656 . . . . 5 ((𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) ∥ 𝑁𝑃𝑁))
64, 5syl5ibcom 235 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 𝑃𝑃𝑁))
76con3d 148 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 𝑃))
8 0nnn 11052 . . . . . . . . 9 ¬ 0 ∈ ℕ
9 prmnn 15388 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
10 eleq1 2689 . . . . . . . . . 10 (𝑃 = 0 → (𝑃 ∈ ℕ ↔ 0 ∈ ℕ))
119, 10syl5ibcom 235 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 = 0 → 0 ∈ ℕ))
128, 11mtoi 190 . . . . . . . 8 (𝑃 ∈ ℙ → ¬ 𝑃 = 0)
1312intnanrd 963 . . . . . . 7 (𝑃 ∈ ℙ → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
1413adantr 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
15 gcdn0cl 15224 . . . . . . . 8 (((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → (𝑃 gcd 𝑁) ∈ ℕ)
1615ex 450 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
171, 16sylan 488 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
1814, 17mpd 15 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℕ)
193simpld 475 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑃)
20 isprm2 15395 . . . . . . . 8 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2120simprbi 480 . . . . . . 7 (𝑃 ∈ ℙ → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
22 breq1 4656 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → (𝑧𝑃 ↔ (𝑃 gcd 𝑁) ∥ 𝑃))
23 eqeq1 2626 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 1 ↔ (𝑃 gcd 𝑁) = 1))
24 eqeq1 2626 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 𝑃 ↔ (𝑃 gcd 𝑁) = 𝑃))
2523, 24orbi12d 746 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
2622, 25imbi12d 334 . . . . . . . 8 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2726rspcv 3305 . . . . . . 7 ((𝑃 gcd 𝑁) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2821, 27syl5com 31 . . . . . 6 (𝑃 ∈ ℙ → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2928adantr 481 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
3018, 19, 29mp2d 49 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
31 biorf 420 . . . . 5 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1)))
32 orcom 402 . . . . 5 (((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
3331, 32syl6bb 276 . . . 4 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
3430, 33syl5ibrcom 237 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 gcd 𝑁) = 𝑃 → (𝑃 gcd 𝑁) = 1))
357, 34syld 47 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → (𝑃 gcd 𝑁) = 1))
36 iddvds 14995 . . . . . . 7 (𝑃 ∈ ℤ → 𝑃𝑃)
371, 36syl 17 . . . . . 6 (𝑃 ∈ ℙ → 𝑃𝑃)
3837adantr 481 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃𝑃)
39 dvdslegcd 15226 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4039ex 450 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
41403anidm12 1383 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
421, 41sylan 488 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
4314, 42mpd 15 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4438, 43mpand 711 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁𝑃 ≤ (𝑃 gcd 𝑁)))
45 prmgt1 15409 . . . . . 6 (𝑃 ∈ ℙ → 1 < 𝑃)
4645adantr 481 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 1 < 𝑃)
471zred 11482 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4847adantr 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈ ℝ)
4918nnred 11035 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℝ)
50 1re 10039 . . . . . . 7 1 ∈ ℝ
51 ltletr 10129 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5250, 51mp3an1 1411 . . . . . 6 ((𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5348, 49, 52syl2anc 693 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5446, 53mpand 711 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ≤ (𝑃 gcd 𝑁) → 1 < (𝑃 gcd 𝑁)))
55 ltne 10134 . . . . . 6 ((1 ∈ ℝ ∧ 1 < (𝑃 gcd 𝑁)) → (𝑃 gcd 𝑁) ≠ 1)
5650, 55mpan 706 . . . . 5 (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1)
5756a1i 11 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1))
5844, 54, 573syld 60 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 → (𝑃 gcd 𝑁) ≠ 1))
5958necon2bd 2810 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 → ¬ 𝑃𝑁))
6035, 59impbid 202 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   < clt 10074  cle 10075  cn 11020  2c2 11070  cz 11377  cuz 11687  cdvds 14983   gcd cgcd 15216  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  prmrp  15424  euclemma  15425  cncongrprm  15437  isoddgcd1  15439  phiprmpw  15481  fermltl  15489  prmdiv  15490  prmdiveq  15491  vfermltl  15506  prmpwdvds  15608  1259lem5  15842  2503lem3  15846  4001lem4  15851  gexexlem  18255  ablfac1lem  18467  ablfac1eu  18472  pgpfac1lem3  18476  perfect1  24953  perfectlem1  24954  perfectlem2  24955  lgslem1  25022  lgsprme0  25064  lgsqrlem2  25072  lgsqr  25076  gausslemma2dlem0c  25083  lgsquad2lem2  25110  2sqblem  25156  rpvmasumlem  25176  dchrisum0flblem2  25198  nn0prpwlem  32317  isodd7  41577
  Copyright terms: Public domain W3C validator