MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3clem Structured version   Visualization version   Unicode version

Theorem cnfcom3clem 8602
Description: Lemma for cnfcom3c 8603. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.)
Hypotheses
Ref Expression
cnfcom3c.s  |-  S  =  dom  ( om CNF  A
)
cnfcom3c.f  |-  F  =  ( `' ( om CNF 
A ) `  b
)
cnfcom3c.g  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
cnfcom3c.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcom3c.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcom3c.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcom3c.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcom3c.w  |-  W  =  ( G `  U. dom  G )
cnfcom3c.x  |-  X  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( F `
 W )  .o  v )  +o  u
) )
cnfcom3c.y  |-  Y  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  u )  +o  v
) )
cnfcom3c.n  |-  N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )
cnfcom3c.l  |-  L  =  ( b  e.  ( om  ^o  A ) 
|->  N )
Assertion
Ref Expression
cnfcom3clem  |-  ( A  e.  On  ->  E. g A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( g `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
Distinct variable groups:    g, b,
k, u, v, w, x, z, A    u, K, v    g, L, w   
x, M    u, T, v, z    f, k, u, v, x, z, F   
f, G, k, u, v, x, z    f, H, u, v, x    S, k, z    u, W, v, w, x
Allowed substitution hints:    A( f)    S( x, w, v, u, f, g, b)    T( x, w, f, g, k, b)    F( w, g, b)    G( w, g, b)    H( z, w, g, k, b)    K( x, z, w, f, g, k, b)    L( x, z, v, u, f, k, b)    M( z, w, v, u, f, g, k, b)    N( x, z, w, v, u, f, g, k, b)    W( z, f, g, k, b)    X( x, z, w, v, u, f, g, k, b)    Y( x, z, w, v, u, f, g, k, b)

Proof of Theorem cnfcom3clem
StepHypRef Expression
1 cnfcom3c.s . . . . . 6  |-  S  =  dom  ( om CNF  A
)
2 simp1 1061 . . . . . 6  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  A  e.  On )
3 omelon 8543 . . . . . . . . 9  |-  om  e.  On
4 1onn 7719 . . . . . . . . 9  |-  1o  e.  om
5 ondif2 7582 . . . . . . . . 9  |-  ( om  e.  ( On  \  2o )  <->  ( om  e.  On  /\  1o  e.  om ) )
63, 4, 5mpbir2an 955 . . . . . . . 8  |-  om  e.  ( On  \  2o )
7 oeworde 7673 . . . . . . . 8  |-  ( ( om  e.  ( On 
\  2o )  /\  A  e.  On )  ->  A  C_  ( om  ^o  A ) )
86, 2, 7sylancr 695 . . . . . . 7  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  A  C_  ( om  ^o  A
) )
9 simp2 1062 . . . . . . 7  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  b  e.  A )
108, 9sseldd 3604 . . . . . 6  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  b  e.  ( om  ^o  A
) )
11 cnfcom3c.f . . . . . 6  |-  F  =  ( `' ( om CNF 
A ) `  b
)
12 cnfcom3c.g . . . . . 6  |-  G  = OrdIso
(  _E  ,  ( F supp  (/) ) )
13 cnfcom3c.h . . . . . 6  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
14 cnfcom3c.t . . . . . 6  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
15 cnfcom3c.m . . . . . 6  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
16 cnfcom3c.k . . . . . 6  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
17 cnfcom3c.w . . . . . 6  |-  W  =  ( G `  U. dom  G )
18 simp3 1063 . . . . . 6  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  om  C_  b
)
191, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18cnfcom3lem 8600 . . . . 5  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  W  e.  ( On  \  1o ) )
20 cnfcom3c.x . . . . . . 7  |-  X  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( F `
 W )  .o  v )  +o  u
) )
21 cnfcom3c.y . . . . . . 7  |-  Y  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  u )  +o  v
) )
22 cnfcom3c.n . . . . . . 7  |-  N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )
231, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22cnfcom3 8601 . . . . . 6  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  N : b -1-1-onto-> ( om  ^o  W
) )
24 f1of 6137 . . . . . . . . . 10  |-  ( N : b -1-1-onto-> ( om  ^o  W
)  ->  N :
b --> ( om  ^o  W ) )
2523, 24syl 17 . . . . . . . . 9  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  N : b --> ( om 
^o  W ) )
26 vex 3203 . . . . . . . . 9  |-  b  e. 
_V
27 fex 6490 . . . . . . . . 9  |-  ( ( N : b --> ( om  ^o  W )  /\  b  e.  _V )  ->  N  e.  _V )
2825, 26, 27sylancl 694 . . . . . . . 8  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  N  e.  _V )
29 cnfcom3c.l . . . . . . . . 9  |-  L  =  ( b  e.  ( om  ^o  A ) 
|->  N )
3029fvmpt2 6291 . . . . . . . 8  |-  ( ( b  e.  ( om 
^o  A )  /\  N  e.  _V )  ->  ( L `  b
)  =  N )
3110, 28, 30syl2anc 693 . . . . . . 7  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  ( L `  b )  =  N )
32 f1oeq1 6127 . . . . . . 7  |-  ( ( L `  b )  =  N  ->  (
( L `  b
) : b -1-1-onto-> ( om 
^o  W )  <->  N :
b
-1-1-onto-> ( om  ^o  W ) ) )
3331, 32syl 17 . . . . . 6  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  (
( L `  b
) : b -1-1-onto-> ( om 
^o  W )  <->  N :
b
-1-1-onto-> ( om  ^o  W ) ) )
3423, 33mpbird 247 . . . . 5  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  ( L `  b ) : b -1-1-onto-> ( om  ^o  W
) )
35 oveq2 6658 . . . . . . 7  |-  ( w  =  W  ->  ( om  ^o  w )  =  ( om  ^o  W
) )
36 f1oeq3 6129 . . . . . . 7  |-  ( ( om  ^o  w )  =  ( om  ^o  W )  ->  (
( L `  b
) : b -1-1-onto-> ( om 
^o  w )  <->  ( L `  b ) : b -1-1-onto-> ( om  ^o  W ) ) )
3735, 36syl 17 . . . . . 6  |-  ( w  =  W  ->  (
( L `  b
) : b -1-1-onto-> ( om 
^o  w )  <->  ( L `  b ) : b -1-1-onto-> ( om  ^o  W ) ) )
3837rspcev 3309 . . . . 5  |-  ( ( W  e.  ( On 
\  1o )  /\  ( L `  b ) : b -1-1-onto-> ( om  ^o  W
) )  ->  E. w  e.  ( On  \  1o ) ( L `  b ) : b -1-1-onto-> ( om  ^o  w ) )
3919, 34, 38syl2anc 693 . . . 4  |-  ( ( A  e.  On  /\  b  e.  A  /\  om  C_  b )  ->  E. w  e.  ( On  \  1o ) ( L `  b ) : b -1-1-onto-> ( om  ^o  w ) )
40393expia 1267 . . 3  |-  ( ( A  e.  On  /\  b  e.  A )  ->  ( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( L `  b
) : b -1-1-onto-> ( om 
^o  w ) ) )
4140ralrimiva 2966 . 2  |-  ( A  e.  On  ->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( L `  b ) : b -1-1-onto-> ( om  ^o  w ) ) )
42 ovex 6678 . . . . 5  |-  ( om 
^o  A )  e. 
_V
4342mptex 6486 . . . 4  |-  ( b  e.  ( om  ^o  A )  |->  N )  e.  _V
4429, 43eqeltri 2697 . . 3  |-  L  e. 
_V
45 nfmpt1 4747 . . . . . 6  |-  F/_ b
( b  e.  ( om  ^o  A ) 
|->  N )
4629, 45nfcxfr 2762 . . . . 5  |-  F/_ b L
4746nfeq2 2780 . . . 4  |-  F/ b  g  =  L
48 fveq1 6190 . . . . . . 7  |-  ( g  =  L  ->  (
g `  b )  =  ( L `  b ) )
49 f1oeq1 6127 . . . . . . 7  |-  ( ( g `  b )  =  ( L `  b )  ->  (
( g `  b
) : b -1-1-onto-> ( om 
^o  w )  <->  ( L `  b ) : b -1-1-onto-> ( om  ^o  w ) ) )
5048, 49syl 17 . . . . . 6  |-  ( g  =  L  ->  (
( g `  b
) : b -1-1-onto-> ( om 
^o  w )  <->  ( L `  b ) : b -1-1-onto-> ( om  ^o  w ) ) )
5150rexbidv 3052 . . . . 5  |-  ( g  =  L  ->  ( E. w  e.  ( On  \  1o ) ( g `  b ) : b -1-1-onto-> ( om  ^o  w
)  <->  E. w  e.  ( On  \  1o ) ( L `  b
) : b -1-1-onto-> ( om 
^o  w ) ) )
5251imbi2d 330 . . . 4  |-  ( g  =  L  ->  (
( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( g `  b
) : b -1-1-onto-> ( om 
^o  w ) )  <-> 
( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( L `  b
) : b -1-1-onto-> ( om 
^o  w ) ) ) )
5347, 52ralbid 2983 . . 3  |-  ( g  =  L  ->  ( A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( g `  b ) : b -1-1-onto-> ( om  ^o  w
) )  <->  A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( L `  b ) : b -1-1-onto-> ( om  ^o  w ) ) ) )
5444, 53spcev 3300 . 2  |-  ( A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On  \  1o ) ( L `  b ) : b -1-1-onto-> ( om  ^o  w ) )  ->  E. g A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( g `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
5541, 54syl 17 1  |-  ( A  e.  On  ->  E. g A. b  e.  A  ( om  C_  b  ->  E. w  e.  ( On 
\  1o ) ( g `  b ) : b -1-1-onto-> ( om  ^o  w
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   U.cuni 4436    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114    o. ccom 5118   Oncon0 5723   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   supp csupp 7295  seq𝜔cseqom 7542   1oc1o 7553   2oc2o 7554    +o coa 7557    .o comu 7558    ^o coe 7559  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cnfcom3c  8603
  Copyright terms: Public domain W3C validator