| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfcom3clem | Structured version Visualization version Unicode version | ||
| Description: Lemma for cnfcom3c 8603. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.) |
| Ref | Expression |
|---|---|
| cnfcom3c.s |
|
| cnfcom3c.f |
|
| cnfcom3c.g |
|
| cnfcom3c.h |
|
| cnfcom3c.t |
|
| cnfcom3c.m |
|
| cnfcom3c.k |
|
| cnfcom3c.w |
|
| cnfcom3c.x |
|
| cnfcom3c.y |
|
| cnfcom3c.n |
|
| cnfcom3c.l |
|
| Ref | Expression |
|---|---|
| cnfcom3clem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfcom3c.s |
. . . . . 6
| |
| 2 | simp1 1061 |
. . . . . 6
| |
| 3 | omelon 8543 |
. . . . . . . . 9
| |
| 4 | 1onn 7719 |
. . . . . . . . 9
| |
| 5 | ondif2 7582 |
. . . . . . . . 9
| |
| 6 | 3, 4, 5 | mpbir2an 955 |
. . . . . . . 8
|
| 7 | oeworde 7673 |
. . . . . . . 8
| |
| 8 | 6, 2, 7 | sylancr 695 |
. . . . . . 7
|
| 9 | simp2 1062 |
. . . . . . 7
| |
| 10 | 8, 9 | sseldd 3604 |
. . . . . 6
|
| 11 | cnfcom3c.f |
. . . . . 6
| |
| 12 | cnfcom3c.g |
. . . . . 6
| |
| 13 | cnfcom3c.h |
. . . . . 6
| |
| 14 | cnfcom3c.t |
. . . . . 6
| |
| 15 | cnfcom3c.m |
. . . . . 6
| |
| 16 | cnfcom3c.k |
. . . . . 6
| |
| 17 | cnfcom3c.w |
. . . . . 6
| |
| 18 | simp3 1063 |
. . . . . 6
| |
| 19 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18 | cnfcom3lem 8600 |
. . . . 5
|
| 20 | cnfcom3c.x |
. . . . . . 7
| |
| 21 | cnfcom3c.y |
. . . . . . 7
| |
| 22 | cnfcom3c.n |
. . . . . . 7
| |
| 23 | 1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22 | cnfcom3 8601 |
. . . . . 6
|
| 24 | f1of 6137 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
|
| 26 | vex 3203 |
. . . . . . . . 9
| |
| 27 | fex 6490 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | sylancl 694 |
. . . . . . . 8
|
| 29 | cnfcom3c.l |
. . . . . . . . 9
| |
| 30 | 29 | fvmpt2 6291 |
. . . . . . . 8
|
| 31 | 10, 28, 30 | syl2anc 693 |
. . . . . . 7
|
| 32 | f1oeq1 6127 |
. . . . . . 7
| |
| 33 | 31, 32 | syl 17 |
. . . . . 6
|
| 34 | 23, 33 | mpbird 247 |
. . . . 5
|
| 35 | oveq2 6658 |
. . . . . . 7
| |
| 36 | f1oeq3 6129 |
. . . . . . 7
| |
| 37 | 35, 36 | syl 17 |
. . . . . 6
|
| 38 | 37 | rspcev 3309 |
. . . . 5
|
| 39 | 19, 34, 38 | syl2anc 693 |
. . . 4
|
| 40 | 39 | 3expia 1267 |
. . 3
|
| 41 | 40 | ralrimiva 2966 |
. 2
|
| 42 | ovex 6678 |
. . . . 5
| |
| 43 | 42 | mptex 6486 |
. . . 4
|
| 44 | 29, 43 | eqeltri 2697 |
. . 3
|
| 45 | nfmpt1 4747 |
. . . . . 6
| |
| 46 | 29, 45 | nfcxfr 2762 |
. . . . 5
|
| 47 | 46 | nfeq2 2780 |
. . . 4
|
| 48 | fveq1 6190 |
. . . . . . 7
| |
| 49 | f1oeq1 6127 |
. . . . . . 7
| |
| 50 | 48, 49 | syl 17 |
. . . . . 6
|
| 51 | 50 | rexbidv 3052 |
. . . . 5
|
| 52 | 51 | imbi2d 330 |
. . . 4
|
| 53 | 47, 52 | ralbid 2983 |
. . 3
|
| 54 | 44, 53 | spcev 3300 |
. 2
|
| 55 | 41, 54 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seqom 7543 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-oexp 7566 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-cnf 8559 |
| This theorem is referenced by: cnfcom3c 8603 |
| Copyright terms: Public domain | W3C validator |