MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21 Structured version   Visualization version   GIF version

Theorem cnmpt21 21474
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt21.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt21.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
cnmpt21.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt21.b (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
cnmpt21.c (𝑧 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
cnmpt21 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐽   𝑥,𝑦,𝑧,𝐿   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑧,𝐾   𝑥,𝑍,𝑦,𝑧   𝑥,𝐵,𝑦   𝑧,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑧)   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt21
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . . . . . . . . . 10 (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)
2 simprl 794 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑥𝑋)
3 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝑦𝑌)
4 cnmpt21.j . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (TopOn‘𝑋))
5 cnmpt21.k . . . . . . . . . . . . . . . 16 (𝜑𝐾 ∈ (TopOn‘𝑌))
6 txtopon 21394 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
74, 5, 6syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
8 cnmpt21.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ (TopOn‘𝑍))
9 cnmpt21.a . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
10 cnf2 21053 . . . . . . . . . . . . . . 15 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
117, 8, 9, 10syl3anc 1326 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
12 eqid 2622 . . . . . . . . . . . . . . 15 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1312fmpt2 7237 . . . . . . . . . . . . . 14 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍)
1411, 13sylibr 224 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴𝑍)
15 rsp2 2936 . . . . . . . . . . . . 13 (∀𝑥𝑋𝑦𝑌 𝐴𝑍 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1614, 15syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝑥𝑋𝑦𝑌) → 𝐴𝑍))
1716imp 445 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐴𝑍)
1812ovmpt4g 6783 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑌𝐴𝑍) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
192, 3, 17, 18syl3anc 1326 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐴)𝑦) = 𝐴)
201, 19syl5eqr 2670 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩) = 𝐴)
2120fveq2d 6195 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = ((𝑧𝑍𝐵)‘𝐴))
22 cnmpt21.b . . . . . . . . . . . . . . 15 (𝜑 → (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀))
23 cntop2 21045 . . . . . . . . . . . . . . 15 ((𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀) → 𝑀 ∈ Top)
2422, 23syl 17 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Top)
25 eqid 2622 . . . . . . . . . . . . . . 15 𝑀 = 𝑀
2625toptopon 20722 . . . . . . . . . . . . . 14 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
2724, 26sylib 208 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
28 cnf2 21053 . . . . . . . . . . . . 13 ((𝐿 ∈ (TopOn‘𝑍) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → (𝑧𝑍𝐵):𝑍 𝑀)
298, 27, 22, 28syl3anc 1326 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑍𝐵):𝑍 𝑀)
30 eqid 2622 . . . . . . . . . . . . 13 (𝑧𝑍𝐵) = (𝑧𝑍𝐵)
3130fmpt 6381 . . . . . . . . . . . 12 (∀𝑧𝑍 𝐵 𝑀 ↔ (𝑧𝑍𝐵):𝑍 𝑀)
3229, 31sylibr 224 . . . . . . . . . . 11 (𝜑 → ∀𝑧𝑍 𝐵 𝑀)
3332adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ∀𝑧𝑍 𝐵 𝑀)
34 cnmpt21.c . . . . . . . . . . . 12 (𝑧 = 𝐴𝐵 = 𝐶)
3534eleq1d 2686 . . . . . . . . . . 11 (𝑧 = 𝐴 → (𝐵 𝑀𝐶 𝑀))
3635rspcv 3305 . . . . . . . . . 10 (𝐴𝑍 → (∀𝑧𝑍 𝐵 𝑀𝐶 𝑀))
3717, 33, 36sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → 𝐶 𝑀)
3834, 30fvmptg 6280 . . . . . . . . 9 ((𝐴𝑍𝐶 𝑀) → ((𝑧𝑍𝐵)‘𝐴) = 𝐶)
3917, 37, 38syl2anc 693 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘𝐴) = 𝐶)
4021, 39eqtrd 2656 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)) = 𝐶)
41 opelxpi 5148 . . . . . . . 8 ((𝑥𝑋𝑦𝑌) → ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌))
42 fvco3 6275 . . . . . . . 8 (((𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
4311, 41, 42syl2an 494 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑧𝑍𝐵)‘((𝑥𝑋, 𝑦𝑌𝐴)‘⟨𝑥, 𝑦⟩)))
44 df-ov 6653 . . . . . . . 8 (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
45 eqid 2622 . . . . . . . . . 10 (𝑥𝑋, 𝑦𝑌𝐶) = (𝑥𝑋, 𝑦𝑌𝐶)
4645ovmpt4g 6783 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌𝐶 𝑀) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
472, 3, 37, 46syl3anc 1326 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (𝑥(𝑥𝑋, 𝑦𝑌𝐶)𝑦) = 𝐶)
4844, 47syl5eqr 2670 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = 𝐶)
4940, 43, 483eqtr4d 2666 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
5049ralrimivva 2971 . . . . 5 (𝜑 → ∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩))
51 nfv 1843 . . . . . 6 𝑢𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
52 nfcv 2764 . . . . . . 7 𝑥𝑌
53 nfcv 2764 . . . . . . . . . 10 𝑥(𝑧𝑍𝐵)
54 nfmpt21 6722 . . . . . . . . . 10 𝑥(𝑥𝑋, 𝑦𝑌𝐴)
5553, 54nfco 5287 . . . . . . . . 9 𝑥((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
56 nfcv 2764 . . . . . . . . 9 𝑥𝑢, 𝑣
5755, 56nffv 6198 . . . . . . . 8 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩)
58 nfmpt21 6722 . . . . . . . . 9 𝑥(𝑥𝑋, 𝑦𝑌𝐶)
5958, 56nffv 6198 . . . . . . . 8 𝑥((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
6057, 59nfeq 2776 . . . . . . 7 𝑥(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
6152, 60nfral 2945 . . . . . 6 𝑥𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)
62 nfv 1843 . . . . . . . 8 𝑣(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩)
63 nfcv 2764 . . . . . . . . . . 11 𝑦(𝑧𝑍𝐵)
64 nfmpt22 6723 . . . . . . . . . . 11 𝑦(𝑥𝑋, 𝑦𝑌𝐴)
6563, 64nfco 5287 . . . . . . . . . 10 𝑦((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))
66 nfcv 2764 . . . . . . . . . 10 𝑦𝑥, 𝑣
6765, 66nffv 6198 . . . . . . . . 9 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩)
68 nfmpt22 6723 . . . . . . . . . 10 𝑦(𝑥𝑋, 𝑦𝑌𝐶)
6968, 66nffv 6198 . . . . . . . . 9 𝑦((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
7067, 69nfeq 2776 . . . . . . . 8 𝑦(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)
71 opeq2 4403 . . . . . . . . . 10 (𝑦 = 𝑣 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑣⟩)
7271fveq2d 6195 . . . . . . . . 9 (𝑦 = 𝑣 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩))
7371fveq2d 6195 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
7472, 73eqeq12d 2637 . . . . . . . 8 (𝑦 = 𝑣 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩)))
7562, 70, 74cbvral 3167 . . . . . . 7 (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩))
76 opeq1 4402 . . . . . . . . . 10 (𝑥 = 𝑢 → ⟨𝑥, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
7776fveq2d 6195 . . . . . . . . 9 (𝑥 = 𝑢 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
7876fveq2d 6195 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
7977, 78eqeq12d 2637 . . . . . . . 8 (𝑥 = 𝑢 → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
8079ralbidv 2986 . . . . . . 7 (𝑥 = 𝑢 → (∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑣⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
8175, 80syl5bb 272 . . . . . 6 (𝑥 = 𝑢 → (∀𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
8251, 61, 81cbvral 3167 . . . . 5 (∀𝑥𝑋𝑦𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑥, 𝑦⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑥, 𝑦⟩) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8350, 82sylib 208 . . . 4 (𝜑 → ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
84 fveq2 6191 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩))
85 fveq2 6191 . . . . . 6 (𝑤 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8684, 85eqeq12d 2637 . . . . 5 (𝑤 = ⟨𝑢, 𝑣⟩ → ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩)))
8786ralxp 5263 . . . 4 (∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤) ↔ ∀𝑢𝑋𝑣𝑌 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘⟨𝑢, 𝑣⟩) = ((𝑥𝑋, 𝑦𝑌𝐶)‘⟨𝑢, 𝑣⟩))
8883, 87sylibr 224 . . 3 (𝜑 → ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤))
89 fco 6058 . . . . . 6 (((𝑧𝑍𝐵):𝑍 𝑀 ∧ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶𝑍) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
9029, 11, 89syl2anc 693 . . . . 5 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀)
91 ffn 6045 . . . . 5 (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)):(𝑋 × 𝑌)⟶ 𝑀 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌))
9290, 91syl 17 . . . 4 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌))
9337ralrimivva 2971 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐶 𝑀)
9445fmpt2 7237 . . . . . 6 (∀𝑥𝑋𝑦𝑌 𝐶 𝑀 ↔ (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
9593, 94sylib 208 . . . . 5 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀)
96 ffn 6045 . . . . 5 ((𝑥𝑋, 𝑦𝑌𝐶):(𝑋 × 𝑌)⟶ 𝑀 → (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌))
9795, 96syl 17 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌))
98 eqfnfv 6311 . . . 4 ((((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) Fn (𝑋 × 𝑌) ∧ (𝑥𝑋, 𝑦𝑌𝐶) Fn (𝑋 × 𝑌)) → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
9992, 97, 98syl2anc 693 . . 3 (𝜑 → (((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶) ↔ ∀𝑤 ∈ (𝑋 × 𝑌)(((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋, 𝑦𝑌𝐶)‘𝑤)))
10088, 99mpbird 247 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) = (𝑥𝑋, 𝑦𝑌𝐶))
101 cnco 21070 . . 3 (((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ∧ (𝑧𝑍𝐵) ∈ (𝐿 Cn 𝑀)) → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
1029, 22, 101syl2anc 693 . 2 (𝜑 → ((𝑧𝑍𝐵) ∘ (𝑥𝑋, 𝑦𝑌𝐴)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
103100, 102eqeltrrd 2702 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐶) ∈ ((𝐽 ×t 𝐾) Cn 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cop 4183   cuni 4436  cmpt 4729   × cxp 5112  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365
This theorem is referenced by:  cnmpt21f  21475  xkofvcn  21487  xkohmeo  21618  qustgplem  21924  prdstmdd  21927  divcn  22671  htpycom  22775  htpycc  22779  reparphti  22797  pcocn  22817  pcohtpylem  22819  pcopt  22822  pcopt2  22823  pcoass  22824  pcorevlem  22826  dipcn  27575
  Copyright terms: Public domain W3C validator