MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divcn Structured version   Visualization version   GIF version

Theorem divcn 22671
Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
addcn.j 𝐽 = (TopOpen‘ℂfld)
divcn.k 𝐾 = (𝐽t (ℂ ∖ {0}))
Assertion
Ref Expression
divcn / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)

Proof of Theorem divcn
Dummy variables 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 10685 . . 3 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2 eldifsn 4317 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
3 divval 10687 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
4 divrec 10701 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑥 / 𝑦) = (𝑥 · (1 / 𝑦)))
53, 4eqtr3d 2658 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
653expb 1266 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
72, 6sylan2b 492 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) = (𝑥 · (1 / 𝑦)))
87mpt2eq3ia 6720 . . 3 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
91, 8eqtri 2644 . 2 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦)))
10 addcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
1110cnfldtopon 22586 . . . . 5 𝐽 ∈ (TopOn‘ℂ)
1211a1i 11 . . . 4 (⊤ → 𝐽 ∈ (TopOn‘ℂ))
13 divcn.k . . . . 5 𝐾 = (𝐽t (ℂ ∖ {0}))
14 difss 3737 . . . . . 6 (ℂ ∖ {0}) ⊆ ℂ
15 resttopon 20965 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1612, 14, 15sylancl 694 . . . . 5 (⊤ → (𝐽t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0})))
1713, 16syl5eqel 2705 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘(ℂ ∖ {0})))
1812, 17cnmpt1st 21471 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
1912, 17cnmpt2nd 21472 . . . . 5 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
20 eqid 2622 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) = (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))
21 eldifsn 4317 . . . . . . . . 9 (𝑧 ∈ (ℂ ∖ {0}) ↔ (𝑧 ∈ ℂ ∧ 𝑧 ≠ 0))
22 reccl 10692 . . . . . . . . 9 ((𝑧 ∈ ℂ ∧ 𝑧 ≠ 0) → (1 / 𝑧) ∈ ℂ)
2321, 22sylbi 207 . . . . . . . 8 (𝑧 ∈ (ℂ ∖ {0}) → (1 / 𝑧) ∈ ℂ)
2420, 23fmpti 6383 . . . . . . 7 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ
25 eqid 2622 . . . . . . . . . 10 (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2)) = (if(1 ≤ ((abs‘𝑥) · 𝑦), 1, ((abs‘𝑥) · 𝑦)) · ((abs‘𝑥) / 2))
2625reccn2 14327 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
27 ovres 6800 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (𝑥(abs ∘ − )𝑤))
28 eldifi 3732 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
29 eldifi 3732 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → 𝑤 ∈ ℂ)
30 eqid 2622 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
3130cnmetdval 22574 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
32 abssub 14066 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (abs‘(𝑥𝑤)) = (abs‘(𝑤𝑥)))
3331, 32eqtrd 2656 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3428, 29, 33syl2an 494 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑤𝑥)))
3527, 34eqtrd 2656 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) = (abs‘(𝑤𝑥)))
3635breq1d 4663 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 ↔ (abs‘(𝑤𝑥)) < 𝑢))
37 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑥 → (1 / 𝑧) = (1 / 𝑥))
38 ovex 6678 . . . . . . . . . . . . . . . . 17 (1 / 𝑥) ∈ V
3937, 20, 38fvmpt 6282 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥) = (1 / 𝑥))
40 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (1 / 𝑧) = (1 / 𝑤))
41 ovex 6678 . . . . . . . . . . . . . . . . 17 (1 / 𝑤) ∈ V
4240, 20, 41fvmpt 6282 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤) = (1 / 𝑤))
4339, 42oveqan12d 6669 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)))
44 eldifsn 4317 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
45 reccl 10692 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
4644, 45sylbi 207 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℂ ∖ {0}) → (1 / 𝑥) ∈ ℂ)
47 eldifsn 4317 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ (ℂ ∖ {0}) ↔ (𝑤 ∈ ℂ ∧ 𝑤 ≠ 0))
48 reccl 10692 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ 𝑤 ≠ 0) → (1 / 𝑤) ∈ ℂ)
4947, 48sylbi 207 . . . . . . . . . . . . . . . 16 (𝑤 ∈ (ℂ ∖ {0}) → (1 / 𝑤) ∈ ℂ)
5030cnmetdval 22574 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑥) − (1 / 𝑤))))
51 abssub 14066 . . . . . . . . . . . . . . . . 17 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → (abs‘((1 / 𝑥) − (1 / 𝑤))) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5250, 51eqtrd 2656 . . . . . . . . . . . . . . . 16 (((1 / 𝑥) ∈ ℂ ∧ (1 / 𝑤) ∈ ℂ) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5346, 49, 52syl2an 494 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((1 / 𝑥)(abs ∘ − )(1 / 𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5443, 53eqtrd 2656 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) = (abs‘((1 / 𝑤) − (1 / 𝑥))))
5554breq1d 4663 . . . . . . . . . . . . 13 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → ((((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦 ↔ (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦))
5636, 55imbi12d 334 . . . . . . . . . . . 12 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑤 ∈ (ℂ ∖ {0})) → (((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5756ralbidva 2985 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) → (∀𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5857rexbidv 3052 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
5958adantr 481 . . . . . . . . 9 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → (∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦) ↔ ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((abs‘(𝑤𝑥)) < 𝑢 → (abs‘((1 / 𝑤) − (1 / 𝑥))) < 𝑦)))
6026, 59mpbird 247 . . . . . . . 8 ((𝑥 ∈ (ℂ ∖ {0}) ∧ 𝑦 ∈ ℝ+) → ∃𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))
6160rgen2 2975 . . . . . . 7 𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)
62 cnxmet 22576 . . . . . . . . 9 (abs ∘ − ) ∈ (∞Met‘ℂ)
63 xmetres2 22166 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})))
6462, 14, 63mp2an 708 . . . . . . . 8 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0}))
65 eqid 2622 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) = ((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))
6610cnfldtopn 22585 . . . . . . . . . . . 12 𝐽 = (MetOpen‘(abs ∘ − ))
67 eqid 2622 . . . . . . . . . . . 12 (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
6865, 66, 67metrest 22329 . . . . . . . . . . 11 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))))
6962, 14, 68mp2an 708 . . . . . . . . . 10 (𝐽t (ℂ ∖ {0})) = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7013, 69eqtri 2644 . . . . . . . . 9 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))))
7170, 66metcn 22348 . . . . . . . 8 ((((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0}))) ∈ (∞Met‘(ℂ ∖ {0})) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦))))
7264, 62, 71mp2an 708 . . . . . . 7 ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽) ↔ ((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)):(ℂ ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ (ℂ ∖ {0})∀𝑦 ∈ ℝ+𝑢 ∈ ℝ+𝑤 ∈ (ℂ ∖ {0})((𝑥((abs ∘ − ) ↾ ((ℂ ∖ {0}) × (ℂ ∖ {0})))𝑤) < 𝑢 → (((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑥)(abs ∘ − )((𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧))‘𝑤)) < 𝑦)))
7324, 61, 72mpbir2an 955 . . . . . 6 (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽)
7473a1i 11 . . . . 5 (⊤ → (𝑧 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑧)) ∈ (𝐾 Cn 𝐽))
75 oveq2 6658 . . . . 5 (𝑧 = 𝑦 → (1 / 𝑧) = (1 / 𝑦))
7612, 17, 19, 17, 74, 75cnmpt21 21474 . . . 4 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
7710mulcn 22670 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
7877a1i 11 . . . 4 (⊤ → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
7912, 17, 18, 76, 78cnmpt22f 21478 . . 3 (⊤ → (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
8079trud 1493 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · (1 / 𝑦))) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
819, 80eqeltri 2697 1 / ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729   × cxp 5112  cres 5116  ccom 5118  wf 5884  cfv 5888  crio 6610  (class class class)co 6650  cmpt2 6652  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  abscabs 13974  t crest 16081  TopOpenctopn 16082  ∞Metcxmt 19731  MetOpencmopn 19736  fldccnfld 19746  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  cdivcncf  22720  evth  22758  dvcnvlem  23739  lhop1lem  23776
  Copyright terms: Public domain W3C validator