MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21 Structured version   Visualization version   Unicode version

Theorem cnmpt21 21474
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt21.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt21.b  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
cnmpt21.c  |-  ( z  =  A  ->  B  =  C )
Assertion
Ref Expression
cnmpt21  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J  tX  K
)  Cn  M ) )
Distinct variable groups:    z, A    z, J    x, y, z, L    ph, x, y, z   
x, X, y, z   
x, M, y, z   
x, Y, y, z   
z, K    x, Z, y, z    x, B, y   
z, C
Allowed substitution hints:    A( x, y)    B( z)    C( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt21
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . . . . . . . . . 10  |-  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. x ,  y
>. )
2 simprl 794 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  x  e.  X )
3 simprr 796 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
y  e.  Y )
4 cnmpt21.j . . . . . . . . . . . . . . . 16  |-  ( ph  ->  J  e.  (TopOn `  X ) )
5 cnmpt21.k . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
6 txtopon 21394 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
74, 5, 6syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
8 cnmpt21.l . . . . . . . . . . . . . . 15  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
9 cnmpt21.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
10 cnf2 21053 . . . . . . . . . . . . . . 15  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  Z )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
117, 8, 9, 10syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z )
12 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1312fmpt2 7237 . . . . . . . . . . . . . 14  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
1411, 13sylibr 224 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  Z )
15 rsp2 2936 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
1614, 15syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
1716imp 445 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  A  e.  Z )
1812ovmpt4g 6783 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  Z )  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
192, 3, 17, 18syl3anc 1326 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
201, 19syl5eqr 2670 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
)  =  A )
2120fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
) )  =  ( ( z  e.  Z  |->  B ) `  A
) )
22 cnmpt21.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
23 cntop2 21045 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  Z  |->  B )  e.  ( L  Cn  M )  ->  M  e.  Top )
2422, 23syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  Top )
25 eqid 2622 . . . . . . . . . . . . . . 15  |-  U. M  =  U. M
2625toptopon 20722 . . . . . . . . . . . . . 14  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
2724, 26sylib 208 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
28 cnf2 21053 . . . . . . . . . . . . 13  |-  ( ( L  e.  (TopOn `  Z )  /\  M  e.  (TopOn `  U. M )  /\  ( z  e.  Z  |->  B )  e.  ( L  Cn  M
) )  ->  (
z  e.  Z  |->  B ) : Z --> U. M
)
298, 27, 22, 28syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  Z  |->  B ) : Z --> U. M )
30 eqid 2622 . . . . . . . . . . . . 13  |-  ( z  e.  Z  |->  B )  =  ( z  e.  Z  |->  B )
3130fmpt 6381 . . . . . . . . . . . 12  |-  ( A. z  e.  Z  B  e.  U. M  <->  ( z  e.  Z  |->  B ) : Z --> U. M
)
3229, 31sylibr 224 . . . . . . . . . . 11  |-  ( ph  ->  A. z  e.  Z  B  e.  U. M )
3332adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  A. z  e.  Z  B  e.  U. M )
34 cnmpt21.c . . . . . . . . . . . 12  |-  ( z  =  A  ->  B  =  C )
3534eleq1d 2686 . . . . . . . . . . 11  |-  ( z  =  A  ->  ( B  e.  U. M  <->  C  e.  U. M ) )
3635rspcv 3305 . . . . . . . . . 10  |-  ( A  e.  Z  ->  ( A. z  e.  Z  B  e.  U. M  ->  C  e.  U. M ) )
3717, 33, 36sylc 65 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  C  e.  U. M )
3834, 30fvmptg 6280 . . . . . . . . 9  |-  ( ( A  e.  Z  /\  C  e.  U. M )  ->  ( ( z  e.  Z  |->  B ) `
 A )  =  C )
3917, 37, 38syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  A )  =  C )
4021, 39eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( z  e.  Z  |->  B ) `  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >.
) )  =  C )
41 opelxpi 5148 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
42 fvco3 6275 . . . . . . . 8  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z  /\  <. x ,  y >.  e.  ( X  X.  Y ) )  ->  ( (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. x ,  y >. )  =  ( ( z  e.  Z  |->  B ) `
 ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. x ,  y
>. ) ) )
4311, 41, 42syl2an 494 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( z  e.  Z  |->  B ) `  (
( x  e.  X ,  y  e.  Y  |->  A ) `  <. x ,  y >. )
) )
44 df-ov 6653 . . . . . . . 8  |-  ( x ( x  e.  X ,  y  e.  Y  |->  C ) y )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. x ,  y
>. )
45 eqid 2622 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  C )  =  ( x  e.  X ,  y  e.  Y  |->  C )
4645ovmpt4g 6783 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  Y  /\  C  e.  U. M )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  C ) y )  =  C )
472, 3, 37, 46syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( x ( x  e.  X ,  y  e.  Y  |->  C ) y )  =  C )
4844, 47syl5eqr 2670 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >.
)  =  C )
4940, 43, 483eqtr4d 2666 . . . . . 6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
)
5049ralrimivva 2971 . . . . 5  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
)
51 nfv 1843 . . . . . 6  |-  F/ u A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
52 nfcv 2764 . . . . . . 7  |-  F/_ x Y
53 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
( z  e.  Z  |->  B )
54 nfmpt21 6722 . . . . . . . . . 10  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
5553, 54nfco 5287 . . . . . . . . 9  |-  F/_ x
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )
56 nfcv 2764 . . . . . . . . 9  |-  F/_ x <. u ,  v >.
5755, 56nffv 6198 . . . . . . . 8  |-  F/_ x
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )
58 nfmpt21 6722 . . . . . . . . 9  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  C )
5958, 56nffv 6198 . . . . . . . 8  |-  F/_ x
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >.
)
6057, 59nfeq 2776 . . . . . . 7  |-  F/ x
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
6152, 60nfral 2945 . . . . . 6  |-  F/ x A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
62 nfv 1843 . . . . . . . 8  |-  F/ v ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )
63 nfcv 2764 . . . . . . . . . . 11  |-  F/_ y
( z  e.  Z  |->  B )
64 nfmpt22 6723 . . . . . . . . . . 11  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
6563, 64nfco 5287 . . . . . . . . . 10  |-  F/_ y
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )
66 nfcv 2764 . . . . . . . . . 10  |-  F/_ y <. x ,  v >.
6765, 66nffv 6198 . . . . . . . . 9  |-  F/_ y
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )
68 nfmpt22 6723 . . . . . . . . . 10  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  C )
6968, 66nffv 6198 . . . . . . . . 9  |-  F/_ y
( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >.
)
7067, 69nfeq 2776 . . . . . . . 8  |-  F/ y ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )
71 opeq2 4403 . . . . . . . . . 10  |-  ( y  =  v  ->  <. x ,  y >.  =  <. x ,  v >. )
7271fveq2d 6195 . . . . . . . . 9  |-  ( y  =  v  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. x ,  v >. )
)
7371fveq2d 6195 . . . . . . . . 9  |-  ( y  =  v  ->  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. x ,  v
>. ) )
7472, 73eqeq12d 2637 . . . . . . . 8  |-  ( y  =  v  ->  (
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  v >. )
) )
7562, 70, 74cbvral 3167 . . . . . . 7  |-  ( A. y  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  v >. )
)
76 opeq1 4402 . . . . . . . . . 10  |-  ( x  =  u  ->  <. x ,  v >.  =  <. u ,  v >. )
7776fveq2d 6195 . . . . . . . . 9  |-  ( x  =  u  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  v >.
)  =  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  <. u ,  v >. )
)
7876fveq2d 6195 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 <. u ,  v
>. ) )
7977, 78eqeq12d 2637 . . . . . . . 8  |-  ( x  =  u  ->  (
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  <->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8079ralbidv 2986 . . . . . . 7  |-  ( x  =  u  ->  ( A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  v >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8175, 80syl5bb 272 . . . . . 6  |-  ( x  =  u  ->  ( A. y  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. x ,  y
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8251, 61, 81cbvral 3167 . . . . 5  |-  ( A. x  e.  X  A. y  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. x ,  y >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. x ,  y >. )  <->  A. u  e.  X  A. v  e.  Y  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >.
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  <. u ,  v >. )
)
8350, 82sylib 208 . . . 4  |-  ( ph  ->  A. u  e.  X  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
)
84 fveq2 6191 . . . . . 6  |-  ( w  =  <. u ,  v
>.  ->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  <. u ,  v >. )
)
85 fveq2 6191 . . . . . 6  |-  ( w  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >.
) )
8684, 85eqeq12d 2637 . . . . 5  |-  ( w  =  <. u ,  v
>.  ->  ( ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  w
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  w )  <-> 
( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
) )
8786ralxp 5263 . . . 4  |-  ( A. w  e.  ( X  X.  Y ) ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) `  w
)  =  ( ( x  e.  X , 
y  e.  Y  |->  C ) `  w )  <->  A. u  e.  X  A. v  e.  Y  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 <. u ,  v
>. )  =  (
( x  e.  X ,  y  e.  Y  |->  C ) `  <. u ,  v >. )
)
8883, 87sylibr 224 . . 3  |-  ( ph  ->  A. w  e.  ( X  X.  Y ) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `
 w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `  w ) )
89 fco 6058 . . . . . 6  |-  ( ( ( z  e.  Z  |->  B ) : Z --> U. M  /\  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z )  ->  ( (
z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) : ( X  X.  Y ) --> U. M )
9029, 11, 89syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) : ( X  X.  Y
) --> U. M )
91 ffn 6045 . . . . 5  |-  ( ( ( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) ) : ( X  X.  Y ) --> U. M  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) )  Fn  ( X  X.  Y ) )
9290, 91syl 17 . . . 4  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  Fn  ( X  X.  Y
) )
9337ralrimivva 2971 . . . . . 6  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  C  e.  U. M )
9445fmpt2 7237 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Y  C  e.  U. M  <->  ( x  e.  X ,  y  e.  Y  |->  C ) : ( X  X.  Y
) --> U. M )
9593, 94sylib 208 . . . . 5  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C ) : ( X  X.  Y ) --> U. M )
96 ffn 6045 . . . . 5  |-  ( ( x  e.  X , 
y  e.  Y  |->  C ) : ( X  X.  Y ) --> U. M  ->  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y
) )
9795, 96syl 17 . . . 4  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y ) )
98 eqfnfv 6311 . . . 4  |-  ( ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  Fn  ( X  X.  Y
)  /\  ( x  e.  X ,  y  e.  Y  |->  C )  Fn  ( X  X.  Y
) )  ->  (
( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C )  <->  A. w  e.  ( X  X.  Y
) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w ) ) )
9992, 97, 98syl2anc 693 . . 3  |-  ( ph  ->  ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C )  <->  A. w  e.  ( X  X.  Y
) ( ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) ) `  w )  =  ( ( x  e.  X ,  y  e.  Y  |->  C ) `
 w ) ) )
10088, 99mpbird 247 . 2  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  =  ( x  e.  X ,  y  e.  Y  |->  C ) )
101 cnco 21070 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L )  /\  ( z  e.  Z  |->  B )  e.  ( L  Cn  M
) )  ->  (
( z  e.  Z  |->  B )  o.  (
x  e.  X , 
y  e.  Y  |->  A ) )  e.  ( ( J  tX  K
)  Cn  M ) )
1029, 22, 101syl2anc 693 . 2  |-  ( ph  ->  ( ( z  e.  Z  |->  B )  o.  ( x  e.  X ,  y  e.  Y  |->  A ) )  e.  ( ( J  tX  K )  Cn  M
) )
103100, 102eqeltrrd 2702 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J  tX  K
)  Cn  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   U.cuni 4436    |-> cmpt 4729    X. cxp 5112    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365
This theorem is referenced by:  cnmpt21f  21475  xkofvcn  21487  xkohmeo  21618  qustgplem  21924  prdstmdd  21927  divcn  22671  htpycom  22775  htpycc  22779  reparphti  22797  pcocn  22817  pcohtpylem  22819  pcopt  22822  pcopt2  22823  pcoass  22824  pcorevlem  22826  dipcn  27575
  Copyright terms: Public domain W3C validator