MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2k Structured version   Visualization version   GIF version

Theorem cnmpt2k 21491
Description: The currying of a two-argument function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
cnmpt2k.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt2k.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt2k.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Assertion
Ref Expression
cnmpt2k (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐿   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem cnmpt2k
Dummy variables 𝑤 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . . 5 𝑥𝑌
2 nfcv 2764 . . . . . 6 𝑥𝑣
3 nfmpt22 6723 . . . . . 6 𝑥(𝑦𝑌, 𝑥𝑋𝐴)
4 nfcv 2764 . . . . . 6 𝑥𝑤
52, 3, 4nfov 6676 . . . . 5 𝑥(𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
61, 5nfmpt 4746 . . . 4 𝑥(𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
7 nfcv 2764 . . . 4 𝑤(𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
8 nfcv 2764 . . . . . . 7 𝑦𝑣
9 nfmpt21 6722 . . . . . . 7 𝑦(𝑦𝑌, 𝑥𝑋𝐴)
10 nfcv 2764 . . . . . . 7 𝑦𝑤
118, 9, 10nfov 6676 . . . . . 6 𝑦(𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
12 nfcv 2764 . . . . . 6 𝑣(𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤)
13 oveq1 6657 . . . . . 6 (𝑣 = 𝑦 → (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
1411, 12, 13cbvmpt 4749 . . . . 5 (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)) = (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
15 oveq2 6658 . . . . . 6 (𝑤 = 𝑥 → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤) = (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))
1615mpteq2dv 4745 . . . . 5 (𝑤 = 𝑥 → (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑤)) = (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
1714, 16syl5eq 2668 . . . 4 (𝑤 = 𝑥 → (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤)) = (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
186, 7, 17cbvmpt 4749 . . 3 (𝑤𝑋 ↦ (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))) = (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)))
19 simpr 477 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
20 simplr 792 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑥𝑋)
21 cnmpt2k.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ (TopOn‘𝑌))
22 cnmpt2k.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (TopOn‘𝑋))
23 txtopon 21394 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐾 ×t 𝐽) ∈ (TopOn‘(𝑌 × 𝑋)))
2421, 22, 23syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝐾 ×t 𝐽) ∈ (TopOn‘(𝑌 × 𝑋)))
25 cnmpt2k.a . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
26 cntop2 21045 . . . . . . . . . . . . 13 ((𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿) → 𝐿 ∈ Top)
2725, 26syl 17 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Top)
28 eqid 2622 . . . . . . . . . . . . 13 𝐿 = 𝐿
2928toptopon 20722 . . . . . . . . . . . 12 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
3027, 29sylib 208 . . . . . . . . . . 11 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
3122, 21, 25cnmptcom 21481 . . . . . . . . . . 11 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
32 cnf2 21053 . . . . . . . . . . 11 (((𝐾 ×t 𝐽) ∈ (TopOn‘(𝑌 × 𝑋)) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌, 𝑥𝑋𝐴) ∈ ((𝐾 ×t 𝐽) Cn 𝐿)) → (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
3324, 30, 31, 32syl3anc 1326 . . . . . . . . . 10 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
34 eqid 2622 . . . . . . . . . . 11 (𝑦𝑌, 𝑥𝑋𝐴) = (𝑦𝑌, 𝑥𝑋𝐴)
3534fmpt2 7237 . . . . . . . . . 10 (∀𝑦𝑌𝑥𝑋 𝐴 𝐿 ↔ (𝑦𝑌, 𝑥𝑋𝐴):(𝑌 × 𝑋)⟶ 𝐿)
3633, 35sylibr 224 . . . . . . . . 9 (𝜑 → ∀𝑦𝑌𝑥𝑋 𝐴 𝐿)
3736r19.21bi 2932 . . . . . . . 8 ((𝜑𝑦𝑌) → ∀𝑥𝑋 𝐴 𝐿)
3837r19.21bi 2932 . . . . . . 7 (((𝜑𝑦𝑌) ∧ 𝑥𝑋) → 𝐴 𝐿)
3938an32s 846 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 𝐿)
4034ovmpt4g 6783 . . . . . 6 ((𝑦𝑌𝑥𝑋𝐴 𝐿) → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = 𝐴)
4119, 20, 39, 40syl3anc 1326 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥) = 𝐴)
4241mpteq2dva 4744 . . . 4 ((𝜑𝑥𝑋) → (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥)) = (𝑦𝑌𝐴))
4342mpteq2dva 4744 . . 3 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌 ↦ (𝑦(𝑦𝑌, 𝑥𝑋𝐴)𝑥))) = (𝑥𝑋 ↦ (𝑦𝑌𝐴)))
4418, 43syl5eq 2668 . 2 (𝜑 → (𝑤𝑋 ↦ (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))) = (𝑥𝑋 ↦ (𝑦𝑌𝐴)))
45 eqid 2622 . . . . 5 (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩)) = (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩))
4645xkoinjcn 21490 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩)) ∈ (𝐽 Cn ((𝐾 ×t 𝐽) ^ko 𝐾)))
4722, 21, 46syl2anc 693 . . 3 (𝜑 → (𝑤𝑋 ↦ (𝑣𝑌 ↦ ⟨𝑣, 𝑤⟩)) ∈ (𝐽 Cn ((𝐾 ×t 𝐽) ^ko 𝐾)))
4833feqmptd 6249 . . . 4 (𝜑 → (𝑦𝑌, 𝑥𝑋𝐴) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧)))
4948, 31eqeltrrd 2702 . . 3 (𝜑 → (𝑧 ∈ (𝑌 × 𝑋) ↦ ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧)) ∈ ((𝐾 ×t 𝐽) Cn 𝐿))
50 fveq2 6191 . . . 4 (𝑧 = ⟨𝑣, 𝑤⟩ → ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧) = ((𝑦𝑌, 𝑥𝑋𝐴)‘⟨𝑣, 𝑤⟩))
51 df-ov 6653 . . . 4 (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤) = ((𝑦𝑌, 𝑥𝑋𝐴)‘⟨𝑣, 𝑤⟩)
5250, 51syl6eqr 2674 . . 3 (𝑧 = ⟨𝑣, 𝑤⟩ → ((𝑦𝑌, 𝑥𝑋𝐴)‘𝑧) = (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))
5322, 21, 24, 47, 49, 52cnmptk1 21484 . 2 (𝜑 → (𝑤𝑋 ↦ (𝑣𝑌 ↦ (𝑣(𝑦𝑌, 𝑥𝑋𝐴)𝑤))) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
5444, 53eqeltrrd 2702 1 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cop 4183   cuni 4436  cmpt 4729   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363   ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-xko 21366
This theorem is referenced by:  xkocnv  21617  xkohmeo  21618
  Copyright terms: Public domain W3C validator